datastes/datasets/image_qualified.py

62 lines
2.7 KiB
Python

import cv2
from PIL import Image
import numpy as np
import os
def calculate_clarity_score(image_path,target_size=(512, 512)):
"""
计算图片的清晰度评分
"""
image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
image = cv2.resize(image, target_size)
if image is None:
raise ValueError(f"无法读取图片:{image_path}")
return cv2.Laplacian(image, cv2.CV_64F).var()
def process_images(input_folder, output_folder,clarity_score_threshold):
if not os.path.exists(input_folder):
print(f"输入文件夹不存在:{input_folder}")
return
for root, dirs, files in os.walk(input_folder):
print(f'——————正在处理文件夹:{root}, 图片数量:{len(files)}——————')
i = 0
for filename in files:
if not filename.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif', '.jfif')):
continue
file_path = os.path.join(root, filename)
# print(f'file_path is {file_path}')
i+=1
try:
# 清晰度检测
clarity_score = calculate_clarity_score(file_path)
if clarity_score > clarity_score_threshold:
# 读取图片
with Image.open(file_path) as img:
# resize
img = img.resize((512, 512))
# output_subfolder
relative_path = os.path.relpath(root, input_folder)
output_subfolder = os.path.join(output_folder, relative_path)
# print(f'root: {root}, input_folder: {input_folder}, relative_path: {relative_path}, output_subfolder: {output_subfolder}')
if not os.path.exists(output_subfolder):
os.makedirs(output_subfolder)
output_path = os.path.join(output_subfolder, os.path.splitext(filename)[0] + ".png")
img.save(output_path, format="PNG")
print(f"处理并保存图片{i}:{file_path} -> {output_path}")
else:
print(f"********图片 {file_path} 清晰度评分 {clarity_score} 不满足要求,跳过********")
except Exception as e:
print(f"********处理图片 {file_path} 时出错:{e}********")
if __name__ == "__main__":
input_folder = 'data_process/datasets/source' # 输入文件夹路径
output_folder = 'data_process/datasets/target' # 输出文件夹路径
clarity_score_threshold =50
process_images(input_folder, output_folder,clarity_score_threshold)