feat: 增加情感检测与标点识别

This commit is contained in:
killua4396 2024-05-18 17:10:09 +08:00
parent 017997a33e
commit 54d13fba87
5 changed files with 398 additions and 3 deletions

View File

@ -16,9 +16,9 @@ import aiohttp
logger = get_logger()
# --------------------初始化本地ASR-----------------------
from utils.stt.funasr_utils import FunAutoSpeechRecognizer
from utils.stt.modified_funasr import ModifiedRecognizer
asr = FunAutoSpeechRecognizer()
asr = ModifiedRecognizer()
logger.info("本地ASR初始化成功")
# -------------------------------------------------------
@ -60,6 +60,10 @@ def parseChunkDelta(chunk):
return "end"
except KeyError:
logger.error(f"error chunk: {chunk}")
return ""
except json.JSONDecodeError:
logger.error(f"error chunk: {chunk}")
return ""
#断句函数
def split_string_with_punctuation(current_sentence,text,is_first,is_end):
@ -224,6 +228,7 @@ async def sct_user_input_handler(ws,user_input_q,llm_input_q,future_session_id,f
async def sct_asr_handler(session_id,user_input_q,llm_input_q,user_input_finish_event):
logger.debug("语音识别函数启动")
is_signup = False
audio = ""
try:
current_message = ""
while not (user_input_finish_event.is_set() and user_input_q.empty()):
@ -231,10 +236,16 @@ async def sct_asr_handler(session_id,user_input_q,llm_input_q,user_input_finish_
asr.session_signup(session_id)
is_signup = True
audio_data = await user_input_q.get()
audio += audio_data
asr_result = asr.streaming_recognize(session_id,audio_data)
current_message += ''.join(asr_result['text'])
asr_result = asr.streaming_recognize(session_id,b'',is_end=True)
current_message += ''.join(asr_result['text'])
current_message = asr.punctuation_correction(current_message)
emotion_dict = asr.emtion_recognition(audio) #情感辨识
if not isinstance(emotion_dict, str):
max_index = emotion_dict['scores'].index(max(emotion_dict['scores']))
current_message = f"{current_message},当前说话人的情绪:{emotion_dict['labels'][max_index]}"
await llm_input_q.put(current_message)
asr.session_signout(session_id)
except Exception as e:
@ -371,6 +382,7 @@ async def scl_asr_handler(session_id,user_input_q,llm_input_q,input_finished_eve
logger.debug("语音识别函数启动")
is_signup = False
current_message = ""
audio = ""
while not (input_finished_event.is_set() and user_input_q.empty()):
try:
aduio_frame = await asyncio.wait_for(user_input_q.get(),timeout=3)
@ -380,15 +392,24 @@ async def scl_asr_handler(session_id,user_input_q,llm_input_q,input_finished_eve
if aduio_frame['is_end']:
asr_result = asr.streaming_recognize(session_id,aduio_frame['audio'], is_end=True)
current_message += ''.join(asr_result['text'])
current_message = asr.punctuation_correction(current_message)
audio += aduio_frame['audio']
emotion_dict =asr.emtion_recognition(audio) #情感辨识
if not isinstance(emotion_dict, str):
max_index = emotion_dict['scores'].index(max(emotion_dict['scores']))
current_message = f"{current_message}当前说话人的情绪:{emotion_dict['labels'][max_index]}"
print(current_message)
await llm_input_q.put(current_message)
current_message = ""
audio = ""
logger.debug(f"接收到用户消息: {current_message}")
else:
asr_result = asr.streaming_recognize(session_id,aduio_frame['audio'])
audio += aduio_frame['audio']
current_message += ''.join(asr_result['text'])
except asyncio.TimeoutError:
continue
except Exception as e:
asr.session_signout(session_id)
logger.error(f"语音识别函数发生错误: {str(e)}")
break
asr.session_signout(session_id)
@ -523,6 +544,7 @@ async def voice_call_audio_consumer(ws,session_id,audio_q,asr_result_q,input_fin
current_message = ""
vad_count = 0
is_signup = False
audio = ""
while not (input_finished_event.is_set() and audio_q.empty()):
try:
if not is_signup:
@ -533,14 +555,22 @@ async def voice_call_audio_consumer(ws,session_id,audio_q,asr_result_q,input_fin
if vad_count > 0:
vad_count -= 1
asr_result = asr.streaming_recognize(session_id, audio_data)
audio += audio_data
current_message += ''.join(asr_result['text'])
else:
vad_count += 1
if vad_count >= 25: #连续25帧没有语音则认为说完了
asr_result = asr.streaming_recognize(session_id, audio_data, is_end=True)
if current_message:
current_message = asr.punctuation_correction(current_message)
audio += audio_data
emotion_dict =asr.emtion_recognition(audio) #情感辨识
if not isinstance(emotion_dict, str):
max_index = emotion_dict['scores'].index(max(emotion_dict['scores']))
current_message = f"{current_message}当前说话人的情绪:{emotion_dict['labels'][max_index]}"
logger.debug(f"检测到静默,用户输入为:{current_message}")
await asr_result_q.put(current_message)
audio = ""
text_response = {"type": "user_text", "code": 200, "msg": current_message}
await ws.send_text(json.dumps(text_response, ensure_ascii=False)) #返回文本数据
current_message = ""

142
utils/stt/emotion_utils.py Normal file
View File

@ -0,0 +1,142 @@
import io
import numpy as np
import base64
import wave
from funasr import AutoModel
import time
"""
Base模型
不能进行情绪分类,只能用作特征提取
"""
FUNASRBASE = {
"model_type": "funasr",
"model_path": "iic/emotion2vec_base",
"model_revision": "v2.0.4"
}
"""
Finetune模型
输出分类结果
"""
FUNASRFINETUNE = {
"model_type": "funasr",
"model_path": "iic/emotion2vec_base_finetuned"
}
def decode_str2bytes(data):
# 将Base64编码的字节串解码为字节串
if data is None:
return None
return base64.b64decode(data.encode('utf-8'))
class Emotion:
def __init__(self,
model_type="funasr",
model_path="iic/emotion2vec_base",
device="cuda",
model_revision="v2.0.4",
**kwargs):
self.model_type = model_type
self.initialize(model_type, model_path, device, model_revision, **kwargs)
# 初始化模型
def initialize(self,
model_type,
model_path,
device,
model_revision,
**kwargs):
if model_type == "funasr":
self.emotion_model = AutoModel(model=model_path, device=device, model_revision=model_revision, **kwargs)
else:
raise NotImplementedError(f"unsupported model type [{model_type}]. only [funasr] expected.")
# 检查输入类型
def check_audio_type(self,
audio_data):
"""check audio data type and convert it to bytes if necessary."""
if isinstance(audio_data, bytes):
pass
elif isinstance(audio_data, list):
audio_data = b''.join(audio_data)
elif isinstance(audio_data, str):
audio_data = decode_str2bytes(audio_data)
elif isinstance(audio_data, io.BytesIO):
wf = wave.open(audio_data, 'rb')
audio_data = wf.readframes(wf.getnframes())
elif isinstance(audio_data, np.ndarray):
pass
else:
raise TypeError(f"audio_data must be bytes, list, str, \
io.BytesIO or numpy array, but got {type(audio_data)}")
if isinstance(audio_data, bytes):
audio_data = np.frombuffer(audio_data, dtype=np.int16)
elif isinstance(audio_data, np.ndarray):
if audio_data.dtype != np.int16:
audio_data = audio_data.astype(np.int16)
else:
raise TypeError(f"audio_data must be bytes or numpy array, but got {type(audio_data)}")
# 输入类型必须是float32
if isinstance(audio_data, np.ndarray):
audio_data = audio_data.astype(np.float32)
else:
raise TypeError(f"audio_data must be numpy array, but got {type(audio_data)}")
return audio_data
def process(self,
audio_data,
granularity="utterance",
extract_embedding=False,
output_dir=None,
only_score=True):
"""
audio_data: only float32 expected beacause layernorm
extract_embedding: save embedding if true
output_dir: save path for embedding
only_Score: only return lables & scores if true
"""
audio_data = self.check_audio_type(audio_data)
if self.model_type == 'funasr':
result = self.emotion_model.generate(audio_data, output_dir=output_dir, granularity=granularity, extract_embedding=extract_embedding)
else:
pass
# 只保留 lables 和 scores
if only_score:
maintain_key = ["labels", "scores"]
for res in result:
keys_to_remove = [k for k in res.keys() if k not in maintain_key]
for k in keys_to_remove:
res.pop(k)
return result[0]
# only for test
def load_audio_file(wav_file):
with wave.open(wav_file, 'rb') as wf:
params = wf.getparams()
frames = wf.readframes(params.nframes)
print("Audio file loaded.")
# Audio Parameters
# print("Channels:", params.nchannels)
# print("Sample width:", params.sampwidth)
# print("Frame rate:", params.framerate)
# print("Number of frames:", params.nframes)
# print("Compression type:", params.comptype)
return frames
if __name__ == "__main__":
inputs = r".\example\test.wav"
inputs = load_audio_file(inputs)
device = "cuda"
# FUNASRBASE.update({"device": device})
FUNASRFINETUNE.update({"deivce": device})
emotion_model = Emotion(**FUNASRFINETUNE)
s = time.time()
result = emotion_model.process(inputs)
t = time.time()
print(t - s)
print(result)

View File

@ -0,0 +1,29 @@
from .funasr_utils import FunAutoSpeechRecognizer
from .punctuation_utils import FUNASR, Punctuation
from .emotion_utils import FUNASRFINETUNE, Emotion
class ModifiedRecognizer():
def __init__(self):
#增加语音识别模型
self.asr_model = FunAutoSpeechRecognizer()
#增加标点模型
self.puctuation_model = Punctuation(**FUNASR)
# 情绪识别模型
self.emotion_model = Emotion(**FUNASRFINETUNE)
def session_signup(self, session_id):
self.asr_model.session_signup(session_id)
def session_signout(self, session_id):
self.asr_model.session_signout(session_id)
def streaming_recognize(self, session_id, audio_data,is_end=False):
return self.asr_model.streaming_recognize(session_id, audio_data,is_end=is_end)
def punctuation_correction(self, sentence):
return self.puctuation_model.process(sentence)
def emtion_recognition(self, audio):
return self.emotion_model.process(audio)

View File

@ -0,0 +1,119 @@
from funasr import AutoModel
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
PUNCTUATION_MARK = [",", ".", "?", "!", "", "", "", ""]
"""
FUNASR
模型大小: 1G
效果: 较好
输入类型: 仅支持字符串不支持list, 输入list会将list视为彼此独立的字符串处理
"""
FUNASR = {
"model_type": "funasr",
"model_path": "ct-punc",
"model_revision": "v2.0.4"
}
"""
CTTRANSFORMER
模型大小: 275M
效果较差
输入类型: 支持字符串与list, 同时支持输入cache
"""
CTTRANSFORMER = {
"model_type": "ct-transformer",
"model_path": "iic/punc_ct-transformer_zh-cn-common-vad_realtime-vocab272727",
"model_revision": "v2.0.4"
}
class Punctuation:
def __init__(self,
model_type="funasr", # funasr | ct-transformer
model_path="ct-punc",
device="cuda",
model_revision="v2.0.4",
**kwargs):
self.model_type=model_type
self.initialize(model_type, model_path, device, model_revision, **kwargs)
def initialize(self,
model_type,
model_path,
device,
model_revision,
**kwargs):
if model_type == 'funasr':
self.punc_model = AutoModel(model=model_path, device=device, model_revision=model_revision, **kwargs)
elif model_type == 'ct-transformer':
self.punc_model = pipeline(task=Tasks.punctuation, model=model_path, model_revision=model_revision, **kwargs)
else:
raise NotImplementedError(f"unsupported model type [{model_type}]. only [funasr|ct-transformer] expected.")
def check_text_type(self,
text_data):
# funasr只支持单个str输入不支持list输入此处将list转化为字符串
if self.model_type == 'funasr':
if isinstance(text_data, str):
pass
elif isinstance(text_data, list):
text_data = ''.join(text_data)
else:
raise TypeError(f"text must be str or list, but got {type(list)}")
# ct-transformer支持list输入
# TODO 验证拆分字符串能否提高效率
elif self.model_type == 'ct-transformer':
if isinstance(text_data, str):
text_data = [text_data]
elif isinstance(text_data, list):
pass
else:
raise TypeError(f"text must be str or list, but got {type(list)}")
else:
pass
return text_data
def generate_cache(self, cache):
new_cache = {'pre_text': ""}
for text in cache['text']:
if text != '':
new_cache['pre_text'] = new_cache['pre_text']+text
return new_cache
def process(self,
text,
append_period=False,
cache={}):
if text == '':
return ''
text = self.check_text_type(text)
if self.model_type == 'funasr':
result = self.punc_model.generate(text)
elif self.model_type == 'ct-transformer':
if cache != {}:
cache = self.generate_cache(cache)
result = self.punc_model(text, cache=cache)
punced_text = ''
for res in result:
punced_text += res['text']
# 如果最后没有标点符号,手动加上。
if append_period and not punced_text[-1] in PUNCTUATION_MARK:
punced_text += ""
return punced_text
if __name__ == "__main__":
inputs = "把字符串拆分为list只|适用于ct-transformer模型|在数据处理部分|已经把list转为单个字符串"
"""
把字符串拆分为list只适用于ct-transformer模型,
在数据处理部分,已经把list转为单个字符串
"""
vads = inputs.split("|")
device = "cuda"
CTTRANSFORMER.update({"device": device})
puct_model = Punctuation(**CTTRANSFORMER)
result = puct_model.process(vads)
print(result)
# FUNASR.update({"device":"cuda"})
# puct_model = Punctuation(**FUNASR)
# result = puct_model.process(vads)
# print(result)

View File

@ -0,0 +1,75 @@
from modelscope.pipelines import pipeline
import numpy as np
import os
import pdb
ERES2NETV2 = {
"task": 'speaker-verification',
"model_name": 'damo/speech_eres2netv2_sv_zh-cn_16k-common',
"model_revision": 'v1.0.1',
"save_embeddings": False
}
# 保存 embedding 的路径
DEFALUT_SAVE_PATH = r".\takway\savePath"
class speaker_verfication:
def __init__(self,
task='speaker-verification',
model_name='damo/speech_eres2netv2_sv_zh-cn_16k-common',
model_revision='v1.0.1',
device="cuda",
save_embeddings=False):
self.pipeline = pipeline(
task=task,
model=model_name,
model_revision=model_revision,
device=device)
self.save_embeddings = save_embeddings
def wav2embeddings(self, speaker_1_wav):
result = self.pipeline([speaker_1_wav], output_emb=True)
speaker_1_emb = result['embs'][0]
return speaker_1_emb
def _verifaction(self, speaker_1_wav, speaker_2_wav, threshold, save_path):
if not self.save_embeddings:
result = self.pipeline([speaker_1_wav, speaker_2_wav], thr=threshold)
return result["text"]
else:
result = self.pipeline([speaker_1_wav, speaker_2_wav], thr=threshold, output_emb=True)
speaker1_emb = result["embs"][0]
speaker2_emb = result["embs"][1]
np.save(os.path.join(save_path, "speaker_1.npy"), speaker1_emb)
return result['outputs']["text"]
def _verifaction_from_embedding(self, base_emb, speaker_2_wav, threshold):
base_emb = np.load(base_emb)
result = self.pipeline([speaker_2_wav], output_emb=True)
speaker2_emb = result["embs"][0]
similarity = np.dot(base_emb, speaker2_emb) / (np.linalg.norm(base_emb) * np.linalg.norm(speaker2_emb))
if similarity > threshold:
return "yes"
else:
return "no"
def verfication(self,
base_emb,
speaker_emb,
threshold=0.333, ):
return np.dot(base_emb, speaker_emb) / (np.linalg.norm(base_emb) * np.linalg.norm(speaker_emb)) > threshold
if __name__ == '__main__':
verifier = speaker_verfication(**ERES2NETV2)
verifier = speaker_verfication(save_embeddings=False)
result = verifier.verfication(base_emb=None, speaker_1_wav=r"C:\Users\bing\Downloads\speaker1_a_cn_16k.wav",
speaker_2_wav=r"C:\Users\bing\Downloads\speaker2_a_cn_16k.wav",
threshold=0.333,
save_path=r"D:\python\irving\takway_base-main\savePath"
)
print("---")
print(result)
print(verifier.verfication(r"D:\python\irving\takway_base-main\savePath\speaker_1.npy",
speaker_2_wav=r"C:\Users\bing\Downloads\speaker1_b_cn_16k.wav",
threshold=0.333,
))