对语音接口进行了简略的异常处理

This commit is contained in:
killua4396 2024-05-05 14:50:26 +08:00
parent 75016e3009
commit 3c60c9a418
1 changed files with 104 additions and 74 deletions

View File

@ -63,22 +63,25 @@ def parseChunkDelta(chunk):
#断句函数
def split_string_with_punctuation(current_sentence,text,is_first,is_end):
result = []
if is_end:
if current_sentence:
result.append(current_sentence)
current_sentence = ''
try:
result = []
if is_end:
if current_sentence:
result.append(current_sentence)
current_sentence = ''
return result, current_sentence, is_first
for char in text:
current_sentence += char
if is_first and char in ',.?!,。?!':
result.append(current_sentence)
current_sentence = ''
is_first = False
elif char in '。?!':
result.append(current_sentence)
current_sentence = ''
return result, current_sentence, is_first
for char in text:
current_sentence += char
if is_first and char in ',.?!,。?!':
result.append(current_sentence)
current_sentence = ''
is_first = False
elif char in '。?!':
result.append(current_sentence)
current_sentence = ''
return result, current_sentence, is_first
except Exception as e:
logger.error(f"断句时出现错误: {str(e)}")
#vad预处理
def vad_preprocess(audio):
@ -203,74 +206,84 @@ async def sct_user_input_handler(ws,user_input_q,llm_input_q,future_session_id,f
break
await user_input_q.put(sct_data_json['audio'])
except KeyError as ke:
if sct_data_json['state'] == 1 and sct_data_json['method'] == 'heartbeat':
if 'state' in sct_data_json and 'method' in sct_data_json:
logger.debug("收到心跳包")
except Exception as e:
logger.error(f"用户输入处理函数发生错误: {str(e)}")
#语音识别
async def sct_asr_handler(user_input_q,llm_input_q,user_input_finish_event):
logger.debug("语音识别函数启动")
current_message = ""
while not (user_input_finish_event.is_set() and user_input_q.empty()):
audio_data = await user_input_q.get()
asr_result = asr.streaming_recognize(audio_data)
try:
current_message = ""
while not (user_input_finish_event.is_set() and user_input_q.empty()):
audio_data = await user_input_q.get()
asr_result = asr.streaming_recognize(audio_data)
current_message += ''.join(asr_result['text'])
asr_result = asr.streaming_recognize(b'',is_end=True)
current_message += ''.join(asr_result['text'])
asr_result = asr.streaming_recognize(b'',is_end=True)
current_message += ''.join(asr_result['text'])
await llm_input_q.put(current_message)
await llm_input_q.put(current_message)
except Exception as e:
logger.error(f"语音识别函数发生错误: {str(e)}")
logger.debug(f"接收到用户消息: {current_message}")
#大模型调用
async def sct_llm_handler(ws,session_id,response_type,llm_info,tts_info,db,redis,llm_input_q,chat_finished_event):
logger.debug("llm调用函数启动")
llm_response = ""
current_sentence = ""
is_first = True
is_end = False
session_content = get_session_content(session_id,redis,db)
messages = json.loads(session_content["messages"])
current_message = await llm_input_q.get()
messages.append({'role': 'user', "content": current_message})
payload = json.dumps({
"model": llm_info["model"],
"stream": True,
"messages": messages,
"max_tokens": 10000,
"temperature": llm_info["temperature"],
"top_p": llm_info["top_p"]
})
headers = {
'Authorization': f"Bearer {Config.MINIMAX_LLM.API_KEY}",
'Content-Type': 'application/json'
}
response = requests.post(Config.MINIMAX_LLM.URL, headers=headers, data=payload,stream=True)
for chunk in response.iter_lines():
chunk_data = parseChunkDelta(chunk)
is_end = chunk_data == "end"
if not is_end:
llm_response += chunk_data
sentences,current_sentence,is_first = split_string_with_punctuation(current_sentence,chunk_data,is_first,is_end)
for sentence in sentences:
if response_type == RESPONSE_TEXT:
response_message = {"type": "text", "code":200, "msg": sentence}
await ws.send_text(json.dumps(response_message, ensure_ascii=False))
elif response_type == RESPONSE_AUDIO:
sr,audio = tts.synthesize(sentence, tts_info["speaker_id"], tts_info["language"], tts_info["noise_scale"], tts_info["noise_scale_w"], tts_info["length_scale"],return_bytes=True)
response_message = {"type": "text", "code":200, "msg": sentence}
await ws.send_bytes(audio)
await ws.send_text(json.dumps(response_message, ensure_ascii=False))
try:
llm_response = ""
current_sentence = ""
is_first = True
is_end = False
session_content = get_session_content(session_id,redis,db)
messages = json.loads(session_content["messages"])
current_message = await llm_input_q.get()
messages.append({'role': 'user', "content": current_message})
payload = json.dumps({
"model": llm_info["model"],
"stream": True,
"messages": messages,
"max_tokens": 10000,
"temperature": llm_info["temperature"],
"top_p": llm_info["top_p"]
})
headers = {
'Authorization': f"Bearer {Config.MINIMAX_LLM.API_KEY}",
'Content-Type': 'application/json'
}
response = requests.post(Config.MINIMAX_LLM.URL, headers=headers, data=payload,stream=True) #调用大模型
except Exception as e:
logger.error(f"llm调用发生错误: {str(e)}")
try:
for chunk in response.iter_lines():
chunk_data = parseChunkDelta(chunk)
is_end = chunk_data == "end"
if not is_end:
llm_response += chunk_data
sentences,current_sentence,is_first = split_string_with_punctuation(current_sentence,chunk_data,is_first,is_end) #断句
for sentence in sentences:
if response_type == RESPONSE_TEXT:
response_message = {"type": "text", "code":200, "msg": sentence}
await ws.send_text(json.dumps(response_message, ensure_ascii=False)) #返回文本信息
elif response_type == RESPONSE_AUDIO:
sr,audio = tts.synthesize(sentence, tts_info["speaker_id"], tts_info["language"], tts_info["noise_scale"], tts_info["noise_scale_w"], tts_info["length_scale"],return_bytes=True)
response_message = {"type": "text", "code":200, "msg": sentence}
await ws.send_bytes(audio) #返回音频数据
await ws.send_text(json.dumps(response_message, ensure_ascii=False)) #返回文本信息
logger.debug(f"websocket返回: {sentence}")
if is_end:
logger.debug(f"llm返回结果: {llm_response}")
await ws.send_text(json.dumps({"type": "end", "code": 200, "msg": ""}, ensure_ascii=False))
is_end = False
session_content = get_session_content(session_id,redis,db)
messages = json.loads(session_content["messages"])
messages.append({'role': 'assistant', "content": llm_response})
session_content["messages"] = json.dumps(messages,ensure_ascii=False) #更新对话
redis.set(session_id,json.dumps(session_content,ensure_ascii=False)) #更新session
is_first = True
llm_response = ""
if is_end:
logger.debug(f"llm返回结果: {llm_response}")
await ws.send_text(json.dumps({"type": "end", "code": 200, "msg": ""}, ensure_ascii=False))
is_end = False #重置is_end标志位
session_content = get_session_content(session_id,redis,db)
messages = json.loads(session_content["messages"])
messages.append({'role': 'assistant', "content": llm_response})
session_content["messages"] = json.dumps(messages,ensure_ascii=False) #更新对话
redis.set(session_id,json.dumps(session_content,ensure_ascii=False)) #更新session
is_first = True
llm_response = ""
except Exception as e:
logger.error(f"处理llm返回结果发生错误: {str(e)}")
chat_finished_event.set()
async def streaming_chat_temporary_handler(ws: WebSocket, db, redis):
@ -334,8 +347,9 @@ async def scl_user_input_handler(ws,user_input_q,llm_input_q,future_session_id,f
continue
except asyncio.TimeoutError:
continue
except Exception as e:
logger.error(f"用户输入处理函数发生错误: {str(e)}")
break
#语音识别
async def scl_asr_handler(user_input_q,llm_input_q,input_finished_event,asr_finished_event):
@ -354,6 +368,9 @@ async def scl_asr_handler(user_input_q,llm_input_q,input_finished_event,asr_fini
current_message += ''.join(asr_result['text'])
except asyncio.TimeoutError:
continue
except Exception as e:
logger.error(f"语音识别函数发生错误: {str(e)}")
break
asr_finished_event.set()
#大模型调用
@ -413,6 +430,9 @@ async def scl_llm_handler(ws,session_id,response_type,llm_info,tts_info,db,redis
llm_response = ""
except asyncio.TimeoutError:
continue
except Exception as e:
logger.error(f"处理llm返回结果发生错误: {str(e)}")
break
chat_finished_event.set()
async def streaming_chat_lasting_handler(ws,db,redis):
@ -466,9 +486,13 @@ async def voice_call_audio_producer(ws,audio_q,future,input_finished_event):
vad_frame,audio_data = vad_preprocess(audio_data)
await audio_q.put(vad_frame) #将音频数据存入audio_q
except KeyError as ke:
logger.info(f"收到心跳包")
if 'state' in voice_call_data_json and 'method' in voice_call_data_json:
logger.info(f"收到心跳包")
except asyncio.TimeoutError:
continue
except Exception as e:
logger.error(f"音频数据生产函数发生错误: {str(e)}")
break
#音频数据消费函数
@ -498,6 +522,9 @@ async def voice_call_audio_consumer(ws,audio_q,asr_result_q,input_finished_event
vad_count = 0
except asyncio.TimeoutError:
continue
except Exception as e:
logger.error(f"音频数据消费者函数发生错误: {str(e)}")
break
asr_finished_event.set()
#asr结果消费以及llm返回生产函数
@ -553,6 +580,9 @@ async def voice_call_llm_handler(ws,session_id,llm_info,tts_info,db,redis,asr_re
llm_response = ""
except asyncio.TimeoutError:
continue
except Exception as e:
logger.error(f"处理llm返回结果发生错误: {str(e)}")
break
voice_call_end_event.set()