TakwayDisplayPlatform/utils/speaker_checker_utils.py

114 lines
4.9 KiB
Python

from modelscope.pipelines import pipeline
import numpy as np
import os
ERES2NETV2 = {
"task": 'speaker-verification',
"model_name": 'damo/speech_eres2netv2_sv_zh-cn_16k-common',
"model_revision": 'v1.0.1',
"save_embeddings": False
}
# 保存 embedding 的路径
DEFALUT_SAVE_PATH = os.path.join(os.path.dirname(os.path.dirname(__name__)), "speaker_embedding")
class SpeakerChecker:
def __init__(self,
speaker_wav_path,
task='speaker-verification',
model_name='damo/speech_eres2netv2_sv_zh-cn_16k-common',
model_revision='v1.0.1',
device="cuda",
save_embeddings=False,):
self.pipeline = pipeline(
task=task,
model=model_name,
model_revision=model_revision,
device=device)
self.save_embeddings = save_embeddings
self.update_embedding_with_wav(speaker_wav_path)
# save path 为 none 时 不将 speaker_wav_path 对应音频的 embedding 存在本地
# save_path 不为 none 时 将 speaker_wav_path 对应音频的 embedding 存在本地对应位置
def update_embedding_with_wav(self, speaker_wav_path, save_path=None):
self.speaker_1_emb = self.wav2embeddings(speaker_wav_path, save_path)
def update_embedding_with_np(self, speaker_emb_path):
self.speaker_1_emb = np.load(speaker_emb_path)
def wav2embeddings(self, speaker_1_wav, save_path=None):
result = self.pipeline([speaker_1_wav], output_emb=True)
speaker_1_emb = result['embs'][0]
if save_path is not None:
np.save(save_path, speaker_1_emb)
return speaker_1_emb
def checker(self, audio: str, threshold=0.333):
result = self.pipeline([audio], output_emb=True)
speaker2_emb = result["embs"][0]
similarity = np.dot(self.speaker_1_emb, speaker2_emb) / (np.linalg.norm(self.speaker_1_emb) * np.linalg.norm(speaker2_emb))
if similarity > threshold:
return True
else:
return False
# def _verifaction(self, speaker_1_wav, speaker_2_wav, threshold, save_path):
# if not self.save_embeddings:
# result = self.pipeline([speaker_1_wav, speaker_2_wav], thr=threshold)
# return result["text"]
# else:
# result = self.pipeline([speaker_1_wav, speaker_2_wav], thr=threshold, output_emb=True)
# speaker1_emb = result["embs"][0]
# speaker2_emb = result["embs"][1]
# np.save(os.path.join(save_path, "speaker_1.npy"), speaker1_emb)
# return result['outputs']["text"]
# def _verifaction_from_embedding(self, base_emb, speaker_2_wav, threshold):
# base_emb = np.load(base_emb)
# result = self.pipeline([speaker_2_wav], output_emb=True)
# speaker2_emb = result["embs"][0]
# similarity = np.dot(base_emb, speaker2_emb) / (np.linalg.norm(base_emb) * np.linalg.norm(speaker2_emb))
# if similarity > threshold:
# return "yes"
# else:
# return "no"
# def verfication(self,
# base_emb=None,
# speaker_1_wav=None,
# speaker_2_wav=None,
# threshold=0.333,
# save_path=None):
# if base_emb is not None and speaker_1_wav is not None:
# raise ValueError("Only need one of them, base_emb or speaker_1_wav")
# if base_emb is not None and speaker_2_wav is not None:
# return self._verifaction_from_embedding(base_emb, speaker_2_wav, threshold)
# elif speaker_1_wav is not None and speaker_2_wav is not None:
# return self._verifaction(speaker_1_wav, speaker_2_wav, threshold, save_path)
# else:
# raise NotImplementedError
if __name__ == '__main__':
# verifier = speaker_verfication(**ERES2NETV2)
# verifier = speaker_verfication(save_embeddings=False)
# result = verifier.verfication(base_emb=None, speaker_1_wav=r"C:\Users\bing\Downloads\speaker1_a_cn_16k.wav",
# speaker_2_wav=r"C:\Users\bing\Downloads\speaker2_a_cn_16k.wav",
# threshold=0.333,
# save_path=r"D:\python\irving\takway_base-main\savePath"
# )
# print("---")
# print(result)
# print(verifier.verfication(r"D:\python\irving\takway_base-main\savePath\speaker_1.npy",
# speaker_2_wav=r"C:\Users\bing\Downloads\speaker1_b_cn_16k.wav",
# threshold=0.333,
# ))
speaker_wav_path = r"C:\Users\bing\Downloads\speaker1_a_cn_16k.wav"
speaker_checker = SpeakerChecker(speaker_wav_path)
audio = r"C:\Users\bing\Downloads\speaker1_b_cn_16k.wav"
is_target = speaker_checker.checker(audio)
print(is_target)