from modelscope.pipelines import pipeline import numpy as np import os ERES2NETV2 = { "task": 'speaker-verification', "model_name": 'damo/speech_eres2netv2_sv_zh-cn_16k-common', "model_revision": 'v1.0.1', "save_embeddings": False } # 保存 embedding 的路径 DEFALUT_SAVE_PATH = os.path.join(os.path.dirname(os.path.dirname(__name__)), "speaker_embedding") class SpeakerChecker: def __init__(self, speaker_wav_path, task='speaker-verification', model_name='damo/speech_eres2netv2_sv_zh-cn_16k-common', model_revision='v1.0.1', device="cuda", save_embeddings=False,): self.pipeline = pipeline( task=task, model=model_name, model_revision=model_revision, device=device) self.save_embeddings = save_embeddings self.update_embedding_with_wav(speaker_wav_path) # save path 为 none 时 不将 speaker_wav_path 对应音频的 embedding 存在本地 # save_path 不为 none 时 将 speaker_wav_path 对应音频的 embedding 存在本地对应位置 def update_embedding_with_wav(self, speaker_wav_path, save_path=None): self.speaker_1_emb = self.wav2embeddings(speaker_wav_path, save_path) def update_embedding_with_np(self, speaker_emb_path): self.speaker_1_emb = np.load(speaker_emb_path) def wav2embeddings(self, speaker_1_wav, save_path=None): result = self.pipeline([speaker_1_wav], output_emb=True) speaker_1_emb = result['embs'][0] if save_path is not None: np.save(save_path, speaker_1_emb) return speaker_1_emb def checker(self, audio: str, threshold=0.333): result = self.pipeline([audio], output_emb=True) speaker2_emb = result["embs"][0] similarity = np.dot(self.speaker_1_emb, speaker2_emb) / (np.linalg.norm(self.speaker_1_emb) * np.linalg.norm(speaker2_emb)) if similarity > threshold: return True else: return False # def _verifaction(self, speaker_1_wav, speaker_2_wav, threshold, save_path): # if not self.save_embeddings: # result = self.pipeline([speaker_1_wav, speaker_2_wav], thr=threshold) # return result["text"] # else: # result = self.pipeline([speaker_1_wav, speaker_2_wav], thr=threshold, output_emb=True) # speaker1_emb = result["embs"][0] # speaker2_emb = result["embs"][1] # np.save(os.path.join(save_path, "speaker_1.npy"), speaker1_emb) # return result['outputs']["text"] # def _verifaction_from_embedding(self, base_emb, speaker_2_wav, threshold): # base_emb = np.load(base_emb) # result = self.pipeline([speaker_2_wav], output_emb=True) # speaker2_emb = result["embs"][0] # similarity = np.dot(base_emb, speaker2_emb) / (np.linalg.norm(base_emb) * np.linalg.norm(speaker2_emb)) # if similarity > threshold: # return "yes" # else: # return "no" # def verfication(self, # base_emb=None, # speaker_1_wav=None, # speaker_2_wav=None, # threshold=0.333, # save_path=None): # if base_emb is not None and speaker_1_wav is not None: # raise ValueError("Only need one of them, base_emb or speaker_1_wav") # if base_emb is not None and speaker_2_wav is not None: # return self._verifaction_from_embedding(base_emb, speaker_2_wav, threshold) # elif speaker_1_wav is not None and speaker_2_wav is not None: # return self._verifaction(speaker_1_wav, speaker_2_wav, threshold, save_path) # else: # raise NotImplementedError if __name__ == '__main__': # verifier = speaker_verfication(**ERES2NETV2) # verifier = speaker_verfication(save_embeddings=False) # result = verifier.verfication(base_emb=None, speaker_1_wav=r"C:\Users\bing\Downloads\speaker1_a_cn_16k.wav", # speaker_2_wav=r"C:\Users\bing\Downloads\speaker2_a_cn_16k.wav", # threshold=0.333, # save_path=r"D:\python\irving\takway_base-main\savePath" # ) # print("---") # print(result) # print(verifier.verfication(r"D:\python\irving\takway_base-main\savePath\speaker_1.npy", # speaker_2_wav=r"C:\Users\bing\Downloads\speaker1_b_cn_16k.wav", # threshold=0.333, # )) speaker_wav_path = r"C:\Users\bing\Downloads\speaker1_a_cn_16k.wav" speaker_checker = SpeakerChecker(speaker_wav_path) audio = r"C:\Users\bing\Downloads\speaker1_b_cn_16k.wav" is_target = speaker_checker.checker(audio) print(is_target)