bert-vits2-utils
This commit is contained in:
parent
3f78fcb12c
commit
33c952d327
|
@ -8,3 +8,7 @@ takway.db
|
|||
/storage/**
|
||||
|
||||
/app.log
|
||||
|
||||
**/*.pth
|
||||
**/bert/*
|
||||
**/emotional/*
|
|
@ -0,0 +1,13 @@
|
|||
from utils.bert_vits2_utils import TextToSpeech
|
||||
import soundfile as sf
|
||||
tts = TextToSpeech()
|
||||
tts.print_speakers_info()
|
||||
|
||||
audio, sample_rate= tts.synthesize("你好,我好开心", # 文本
|
||||
0, # 说话人 id
|
||||
style_text="我很难过!!!!呜呜呜!!!", # 情绪prompt,当language=="ZH" 才有效
|
||||
style_weight=0.9, # 情绪prompt权重
|
||||
language="mix", # 语言类型,包括 "ZH" "EN" "mix"
|
||||
en_ratio=1.) # mix语言类型下,英文文本速度,越大速度越慢
|
||||
save_path = "./tmp2.wav"
|
||||
sf.write(save_path, audio, sample_rate)
|
|
@ -0,0 +1,464 @@
|
|||
import math
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from . import commons
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class LayerNorm(nn.Module):
|
||||
def __init__(self, channels, eps=1e-5):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.eps = eps
|
||||
|
||||
self.gamma = nn.Parameter(torch.ones(channels))
|
||||
self.beta = nn.Parameter(torch.zeros(channels))
|
||||
|
||||
def forward(self, x):
|
||||
x = x.transpose(1, -1)
|
||||
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
||||
return x.transpose(1, -1)
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
||||
n_channels_int = n_channels[0]
|
||||
in_act = input_a + input_b
|
||||
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
||||
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
||||
acts = t_act * s_act
|
||||
return acts
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size=1,
|
||||
p_dropout=0.0,
|
||||
window_size=4,
|
||||
isflow=True,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__()
|
||||
self.hidden_channels = hidden_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.n_heads = n_heads
|
||||
self.n_layers = n_layers
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.window_size = window_size
|
||||
# if isflow:
|
||||
# cond_layer = torch.nn.Conv1d(256, 2*hidden_channels*n_layers, 1)
|
||||
# self.cond_pre = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, 1)
|
||||
# self.cond_layer = weight_norm(cond_layer, name='weight')
|
||||
# self.gin_channels = 256
|
||||
self.cond_layer_idx = self.n_layers
|
||||
if "gin_channels" in kwargs:
|
||||
self.gin_channels = kwargs["gin_channels"]
|
||||
if self.gin_channels != 0:
|
||||
self.spk_emb_linear = nn.Linear(self.gin_channels, self.hidden_channels)
|
||||
# vits2 says 3rd block, so idx is 2 by default
|
||||
self.cond_layer_idx = (
|
||||
kwargs["cond_layer_idx"] if "cond_layer_idx" in kwargs else 2
|
||||
)
|
||||
logging.debug(self.gin_channels, self.cond_layer_idx)
|
||||
assert (
|
||||
self.cond_layer_idx < self.n_layers
|
||||
), "cond_layer_idx should be less than n_layers"
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
self.attn_layers = nn.ModuleList()
|
||||
self.norm_layers_1 = nn.ModuleList()
|
||||
self.ffn_layers = nn.ModuleList()
|
||||
self.norm_layers_2 = nn.ModuleList()
|
||||
for i in range(self.n_layers):
|
||||
self.attn_layers.append(
|
||||
MultiHeadAttention(
|
||||
hidden_channels,
|
||||
hidden_channels,
|
||||
n_heads,
|
||||
p_dropout=p_dropout,
|
||||
window_size=window_size,
|
||||
)
|
||||
)
|
||||
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
||||
self.ffn_layers.append(
|
||||
FFN(
|
||||
hidden_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
kernel_size,
|
||||
p_dropout=p_dropout,
|
||||
)
|
||||
)
|
||||
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
||||
|
||||
def forward(self, x, x_mask, g=None):
|
||||
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
||||
x = x * x_mask
|
||||
for i in range(self.n_layers):
|
||||
if i == self.cond_layer_idx and g is not None:
|
||||
g = self.spk_emb_linear(g.transpose(1, 2))
|
||||
g = g.transpose(1, 2)
|
||||
x = x + g
|
||||
x = x * x_mask
|
||||
y = self.attn_layers[i](x, x, attn_mask)
|
||||
y = self.drop(y)
|
||||
x = self.norm_layers_1[i](x + y)
|
||||
|
||||
y = self.ffn_layers[i](x, x_mask)
|
||||
y = self.drop(y)
|
||||
x = self.norm_layers_2[i](x + y)
|
||||
x = x * x_mask
|
||||
return x
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size=1,
|
||||
p_dropout=0.0,
|
||||
proximal_bias=False,
|
||||
proximal_init=True,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__()
|
||||
self.hidden_channels = hidden_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.n_heads = n_heads
|
||||
self.n_layers = n_layers
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.proximal_bias = proximal_bias
|
||||
self.proximal_init = proximal_init
|
||||
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
self.self_attn_layers = nn.ModuleList()
|
||||
self.norm_layers_0 = nn.ModuleList()
|
||||
self.encdec_attn_layers = nn.ModuleList()
|
||||
self.norm_layers_1 = nn.ModuleList()
|
||||
self.ffn_layers = nn.ModuleList()
|
||||
self.norm_layers_2 = nn.ModuleList()
|
||||
for i in range(self.n_layers):
|
||||
self.self_attn_layers.append(
|
||||
MultiHeadAttention(
|
||||
hidden_channels,
|
||||
hidden_channels,
|
||||
n_heads,
|
||||
p_dropout=p_dropout,
|
||||
proximal_bias=proximal_bias,
|
||||
proximal_init=proximal_init,
|
||||
)
|
||||
)
|
||||
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
||||
self.encdec_attn_layers.append(
|
||||
MultiHeadAttention(
|
||||
hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout
|
||||
)
|
||||
)
|
||||
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
||||
self.ffn_layers.append(
|
||||
FFN(
|
||||
hidden_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
kernel_size,
|
||||
p_dropout=p_dropout,
|
||||
causal=True,
|
||||
)
|
||||
)
|
||||
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
||||
|
||||
def forward(self, x, x_mask, h, h_mask):
|
||||
"""
|
||||
x: decoder input
|
||||
h: encoder output
|
||||
"""
|
||||
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
|
||||
device=x.device, dtype=x.dtype
|
||||
)
|
||||
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
||||
x = x * x_mask
|
||||
for i in range(self.n_layers):
|
||||
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
||||
y = self.drop(y)
|
||||
x = self.norm_layers_0[i](x + y)
|
||||
|
||||
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
||||
y = self.drop(y)
|
||||
x = self.norm_layers_1[i](x + y)
|
||||
|
||||
y = self.ffn_layers[i](x, x_mask)
|
||||
y = self.drop(y)
|
||||
x = self.norm_layers_2[i](x + y)
|
||||
x = x * x_mask
|
||||
return x
|
||||
|
||||
|
||||
class MultiHeadAttention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
channels,
|
||||
out_channels,
|
||||
n_heads,
|
||||
p_dropout=0.0,
|
||||
window_size=None,
|
||||
heads_share=True,
|
||||
block_length=None,
|
||||
proximal_bias=False,
|
||||
proximal_init=False,
|
||||
):
|
||||
super().__init__()
|
||||
assert channels % n_heads == 0
|
||||
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels
|
||||
self.n_heads = n_heads
|
||||
self.p_dropout = p_dropout
|
||||
self.window_size = window_size
|
||||
self.heads_share = heads_share
|
||||
self.block_length = block_length
|
||||
self.proximal_bias = proximal_bias
|
||||
self.proximal_init = proximal_init
|
||||
self.attn = None
|
||||
|
||||
self.k_channels = channels // n_heads
|
||||
self.conv_q = nn.Conv1d(channels, channels, 1)
|
||||
self.conv_k = nn.Conv1d(channels, channels, 1)
|
||||
self.conv_v = nn.Conv1d(channels, channels, 1)
|
||||
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
|
||||
if window_size is not None:
|
||||
n_heads_rel = 1 if heads_share else n_heads
|
||||
rel_stddev = self.k_channels**-0.5
|
||||
self.emb_rel_k = nn.Parameter(
|
||||
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
||||
* rel_stddev
|
||||
)
|
||||
self.emb_rel_v = nn.Parameter(
|
||||
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
||||
* rel_stddev
|
||||
)
|
||||
|
||||
nn.init.xavier_uniform_(self.conv_q.weight)
|
||||
nn.init.xavier_uniform_(self.conv_k.weight)
|
||||
nn.init.xavier_uniform_(self.conv_v.weight)
|
||||
if proximal_init:
|
||||
with torch.no_grad():
|
||||
self.conv_k.weight.copy_(self.conv_q.weight)
|
||||
self.conv_k.bias.copy_(self.conv_q.bias)
|
||||
|
||||
def forward(self, x, c, attn_mask=None):
|
||||
q = self.conv_q(x)
|
||||
k = self.conv_k(c)
|
||||
v = self.conv_v(c)
|
||||
|
||||
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
||||
|
||||
x = self.conv_o(x)
|
||||
return x
|
||||
|
||||
def attention(self, query, key, value, mask=None):
|
||||
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
||||
b, d, t_s, t_t = (*key.size(), query.size(2))
|
||||
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
||||
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
||||
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
||||
|
||||
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
||||
if self.window_size is not None:
|
||||
assert (
|
||||
t_s == t_t
|
||||
), "Relative attention is only available for self-attention."
|
||||
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
||||
rel_logits = self._matmul_with_relative_keys(
|
||||
query / math.sqrt(self.k_channels), key_relative_embeddings
|
||||
)
|
||||
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
||||
scores = scores + scores_local
|
||||
if self.proximal_bias:
|
||||
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
||||
scores = scores + self._attention_bias_proximal(t_s).to(
|
||||
device=scores.device, dtype=scores.dtype
|
||||
)
|
||||
if mask is not None:
|
||||
scores = scores.masked_fill(mask == 0, -1e4)
|
||||
if self.block_length is not None:
|
||||
assert (
|
||||
t_s == t_t
|
||||
), "Local attention is only available for self-attention."
|
||||
block_mask = (
|
||||
torch.ones_like(scores)
|
||||
.triu(-self.block_length)
|
||||
.tril(self.block_length)
|
||||
)
|
||||
scores = scores.masked_fill(block_mask == 0, -1e4)
|
||||
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
||||
p_attn = self.drop(p_attn)
|
||||
output = torch.matmul(p_attn, value)
|
||||
if self.window_size is not None:
|
||||
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
||||
value_relative_embeddings = self._get_relative_embeddings(
|
||||
self.emb_rel_v, t_s
|
||||
)
|
||||
output = output + self._matmul_with_relative_values(
|
||||
relative_weights, value_relative_embeddings
|
||||
)
|
||||
output = (
|
||||
output.transpose(2, 3).contiguous().view(b, d, t_t)
|
||||
) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
||||
return output, p_attn
|
||||
|
||||
def _matmul_with_relative_values(self, x, y):
|
||||
"""
|
||||
x: [b, h, l, m]
|
||||
y: [h or 1, m, d]
|
||||
ret: [b, h, l, d]
|
||||
"""
|
||||
ret = torch.matmul(x, y.unsqueeze(0))
|
||||
return ret
|
||||
|
||||
def _matmul_with_relative_keys(self, x, y):
|
||||
"""
|
||||
x: [b, h, l, d]
|
||||
y: [h or 1, m, d]
|
||||
ret: [b, h, l, m]
|
||||
"""
|
||||
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
||||
return ret
|
||||
|
||||
def _get_relative_embeddings(self, relative_embeddings, length):
|
||||
2 * self.window_size + 1
|
||||
# Pad first before slice to avoid using cond ops.
|
||||
pad_length = max(length - (self.window_size + 1), 0)
|
||||
slice_start_position = max((self.window_size + 1) - length, 0)
|
||||
slice_end_position = slice_start_position + 2 * length - 1
|
||||
if pad_length > 0:
|
||||
padded_relative_embeddings = F.pad(
|
||||
relative_embeddings,
|
||||
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
|
||||
)
|
||||
else:
|
||||
padded_relative_embeddings = relative_embeddings
|
||||
used_relative_embeddings = padded_relative_embeddings[
|
||||
:, slice_start_position:slice_end_position
|
||||
]
|
||||
return used_relative_embeddings
|
||||
|
||||
def _relative_position_to_absolute_position(self, x):
|
||||
"""
|
||||
x: [b, h, l, 2*l-1]
|
||||
ret: [b, h, l, l]
|
||||
"""
|
||||
batch, heads, length, _ = x.size()
|
||||
# Concat columns of pad to shift from relative to absolute indexing.
|
||||
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
|
||||
|
||||
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
||||
x_flat = x.view([batch, heads, length * 2 * length])
|
||||
x_flat = F.pad(
|
||||
x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
|
||||
)
|
||||
|
||||
# Reshape and slice out the padded elements.
|
||||
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
|
||||
:, :, :length, length - 1 :
|
||||
]
|
||||
return x_final
|
||||
|
||||
def _absolute_position_to_relative_position(self, x):
|
||||
"""
|
||||
x: [b, h, l, l]
|
||||
ret: [b, h, l, 2*l-1]
|
||||
"""
|
||||
batch, heads, length, _ = x.size()
|
||||
# pad along column
|
||||
x = F.pad(
|
||||
x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
|
||||
)
|
||||
x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
|
||||
# add 0's in the beginning that will skew the elements after reshape
|
||||
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
||||
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
|
||||
return x_final
|
||||
|
||||
def _attention_bias_proximal(self, length):
|
||||
"""Bias for self-attention to encourage attention to close positions.
|
||||
Args:
|
||||
length: an integer scalar.
|
||||
Returns:
|
||||
a Tensor with shape [1, 1, length, length]
|
||||
"""
|
||||
r = torch.arange(length, dtype=torch.float32)
|
||||
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
||||
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
||||
|
||||
|
||||
class FFN(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
filter_channels,
|
||||
kernel_size,
|
||||
p_dropout=0.0,
|
||||
activation=None,
|
||||
causal=False,
|
||||
):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.activation = activation
|
||||
self.causal = causal
|
||||
|
||||
if causal:
|
||||
self.padding = self._causal_padding
|
||||
else:
|
||||
self.padding = self._same_padding
|
||||
|
||||
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
||||
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
|
||||
def forward(self, x, x_mask):
|
||||
x = self.conv_1(self.padding(x * x_mask))
|
||||
if self.activation == "gelu":
|
||||
x = x * torch.sigmoid(1.702 * x)
|
||||
else:
|
||||
x = torch.relu(x)
|
||||
x = self.drop(x)
|
||||
x = self.conv_2(self.padding(x * x_mask))
|
||||
return x * x_mask
|
||||
|
||||
def _causal_padding(self, x):
|
||||
if self.kernel_size == 1:
|
||||
return x
|
||||
pad_l = self.kernel_size - 1
|
||||
pad_r = 0
|
||||
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
||||
x = F.pad(x, commons.convert_pad_shape(padding))
|
||||
return x
|
||||
|
||||
def _same_padding(self, x):
|
||||
if self.kernel_size == 1:
|
||||
return x
|
||||
pad_l = (self.kernel_size - 1) // 2
|
||||
pad_r = self.kernel_size // 2
|
||||
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
||||
x = F.pad(x, commons.convert_pad_shape(padding))
|
||||
return x
|
|
@ -0,0 +1,158 @@
|
|||
import math
|
||||
import torch
|
||||
from torch.nn import functional as F
|
||||
|
||||
|
||||
def init_weights(m, mean=0.0, std=0.01):
|
||||
classname = m.__class__.__name__
|
||||
if classname.find("Conv") != -1:
|
||||
m.weight.data.normal_(mean, std)
|
||||
|
||||
|
||||
def get_padding(kernel_size, dilation=1):
|
||||
return int((kernel_size * dilation - dilation) / 2)
|
||||
|
||||
|
||||
def convert_pad_shape(pad_shape):
|
||||
layer = pad_shape[::-1]
|
||||
pad_shape = [item for sublist in layer for item in sublist]
|
||||
return pad_shape
|
||||
|
||||
|
||||
def intersperse(lst, item):
|
||||
result = [item] * (len(lst) * 2 + 1)
|
||||
result[1::2] = lst
|
||||
return result
|
||||
|
||||
|
||||
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
||||
"""KL(P||Q)"""
|
||||
kl = (logs_q - logs_p) - 0.5
|
||||
kl += (
|
||||
0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
|
||||
)
|
||||
return kl
|
||||
|
||||
|
||||
def rand_gumbel(shape):
|
||||
"""Sample from the Gumbel distribution, protect from overflows."""
|
||||
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
||||
return -torch.log(-torch.log(uniform_samples))
|
||||
|
||||
|
||||
def rand_gumbel_like(x):
|
||||
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
||||
return g
|
||||
|
||||
|
||||
def slice_segments(x, ids_str, segment_size=4):
|
||||
gather_indices = ids_str.view(x.size(0), 1, 1).repeat(
|
||||
1, x.size(1), 1
|
||||
) + torch.arange(segment_size, device=x.device)
|
||||
return torch.gather(x, 2, gather_indices)
|
||||
|
||||
|
||||
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
||||
b, d, t = x.size()
|
||||
if x_lengths is None:
|
||||
x_lengths = t
|
||||
ids_str_max = torch.clamp(x_lengths - segment_size + 1, min=0)
|
||||
ids_str = (torch.rand([b], device=x.device) * ids_str_max).to(dtype=torch.long)
|
||||
ret = slice_segments(x, ids_str, segment_size)
|
||||
return ret, ids_str
|
||||
|
||||
|
||||
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
||||
position = torch.arange(length, dtype=torch.float)
|
||||
num_timescales = channels // 2
|
||||
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
|
||||
num_timescales - 1
|
||||
)
|
||||
inv_timescales = min_timescale * torch.exp(
|
||||
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
|
||||
)
|
||||
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
||||
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
||||
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
||||
signal = signal.view(1, channels, length)
|
||||
return signal
|
||||
|
||||
|
||||
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
||||
b, channels, length = x.size()
|
||||
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
||||
return x + signal.to(dtype=x.dtype, device=x.device)
|
||||
|
||||
|
||||
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
||||
b, channels, length = x.size()
|
||||
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
||||
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
||||
|
||||
|
||||
def subsequent_mask(length):
|
||||
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
||||
return mask
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
||||
n_channels_int = n_channels[0]
|
||||
in_act = input_a + input_b
|
||||
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
||||
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
||||
acts = t_act * s_act
|
||||
return acts
|
||||
|
||||
|
||||
def convert_pad_shape(pad_shape):
|
||||
layer = pad_shape[::-1]
|
||||
pad_shape = [item for sublist in layer for item in sublist]
|
||||
return pad_shape
|
||||
|
||||
|
||||
def shift_1d(x):
|
||||
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
||||
return x
|
||||
|
||||
|
||||
def sequence_mask(length, max_length=None):
|
||||
if max_length is None:
|
||||
max_length = length.max()
|
||||
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
||||
return x.unsqueeze(0) < length.unsqueeze(1)
|
||||
|
||||
|
||||
def generate_path(duration, mask):
|
||||
"""
|
||||
duration: [b, 1, t_x]
|
||||
mask: [b, 1, t_y, t_x]
|
||||
"""
|
||||
|
||||
b, _, t_y, t_x = mask.shape
|
||||
cum_duration = torch.cumsum(duration, -1)
|
||||
|
||||
cum_duration_flat = cum_duration.view(b * t_x)
|
||||
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
||||
path = path.view(b, t_x, t_y)
|
||||
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
||||
path = path.unsqueeze(1).transpose(2, 3) * mask
|
||||
return path
|
||||
|
||||
|
||||
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
||||
if isinstance(parameters, torch.Tensor):
|
||||
parameters = [parameters]
|
||||
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
||||
norm_type = float(norm_type)
|
||||
if clip_value is not None:
|
||||
clip_value = float(clip_value)
|
||||
|
||||
total_norm = 0
|
||||
for p in parameters:
|
||||
param_norm = p.grad.data.norm(norm_type)
|
||||
total_norm += param_norm.item() ** norm_type
|
||||
if clip_value is not None:
|
||||
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
||||
total_norm = total_norm ** (1.0 / norm_type)
|
||||
return total_norm
|
|
@ -0,0 +1,262 @@
|
|||
"""
|
||||
@Desc: 全局配置文件读取
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import yaml
|
||||
from typing import Dict, List
|
||||
import os
|
||||
import shutil
|
||||
import sys
|
||||
|
||||
|
||||
class Resample_config:
|
||||
"""重采样配置"""
|
||||
|
||||
def __init__(self, in_dir: str, out_dir: str, sampling_rate: int = 44100):
|
||||
self.sampling_rate: int = sampling_rate # 目标采样率
|
||||
self.in_dir: str = in_dir # 待处理音频目录路径
|
||||
self.out_dir: str = out_dir # 重采样输出路径
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, dataset_path: str, data: Dict[str, any]):
|
||||
"""从字典中生成实例"""
|
||||
|
||||
# 不检查路径是否有效,此逻辑在resample.py中处理
|
||||
data["in_dir"] = os.path.join(dataset_path, data["in_dir"])
|
||||
data["out_dir"] = os.path.join(dataset_path, data["out_dir"])
|
||||
|
||||
return cls(**data)
|
||||
|
||||
|
||||
class Preprocess_text_config:
|
||||
"""数据预处理配置"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
transcription_path: str,
|
||||
cleaned_path: str,
|
||||
train_path: str,
|
||||
val_path: str,
|
||||
config_path: str,
|
||||
val_per_lang: int = 5,
|
||||
max_val_total: int = 10000,
|
||||
clean: bool = True,
|
||||
):
|
||||
self.transcription_path: str = (
|
||||
transcription_path # 原始文本文件路径,文本格式应为{wav_path}|{speaker_name}|{language}|{text}。
|
||||
)
|
||||
self.cleaned_path: str = (
|
||||
cleaned_path # 数据清洗后文本路径,可以不填。不填则将在原始文本目录生成
|
||||
)
|
||||
self.train_path: str = (
|
||||
train_path # 训练集路径,可以不填。不填则将在原始文本目录生成
|
||||
)
|
||||
self.val_path: str = (
|
||||
val_path # 验证集路径,可以不填。不填则将在原始文本目录生成
|
||||
)
|
||||
self.config_path: str = config_path # 配置文件路径
|
||||
self.val_per_lang: int = val_per_lang # 每个speaker的验证集条数
|
||||
self.max_val_total: int = (
|
||||
max_val_total # 验证集最大条数,多于的会被截断并放到训练集中
|
||||
)
|
||||
self.clean: bool = clean # 是否进行数据清洗
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, dataset_path: str, data: Dict[str, any]):
|
||||
"""从字典中生成实例"""
|
||||
|
||||
data["transcription_path"] = os.path.join(
|
||||
dataset_path, data["transcription_path"]
|
||||
)
|
||||
if data["cleaned_path"] == "" or data["cleaned_path"] is None:
|
||||
data["cleaned_path"] = None
|
||||
else:
|
||||
data["cleaned_path"] = os.path.join(dataset_path, data["cleaned_path"])
|
||||
data["train_path"] = os.path.join(dataset_path, data["train_path"])
|
||||
data["val_path"] = os.path.join(dataset_path, data["val_path"])
|
||||
data["config_path"] = os.path.join(dataset_path, data["config_path"])
|
||||
|
||||
return cls(**data)
|
||||
|
||||
|
||||
class Bert_gen_config:
|
||||
"""bert_gen 配置"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config_path: str,
|
||||
num_processes: int = 2,
|
||||
device: str = "cuda",
|
||||
use_multi_device: bool = False,
|
||||
):
|
||||
self.config_path = config_path
|
||||
self.num_processes = num_processes
|
||||
self.device = device
|
||||
self.use_multi_device = use_multi_device
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, dataset_path: str, data: Dict[str, any]):
|
||||
data["config_path"] = os.path.join(dataset_path, data["config_path"])
|
||||
|
||||
return cls(**data)
|
||||
|
||||
|
||||
class Emo_gen_config:
|
||||
"""emo_gen 配置"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config_path: str,
|
||||
num_processes: int = 2,
|
||||
device: str = "cuda",
|
||||
use_multi_device: bool = False,
|
||||
):
|
||||
self.config_path = config_path
|
||||
self.num_processes = num_processes
|
||||
self.device = device
|
||||
self.use_multi_device = use_multi_device
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, dataset_path: str, data: Dict[str, any]):
|
||||
data["config_path"] = os.path.join(dataset_path, data["config_path"])
|
||||
|
||||
return cls(**data)
|
||||
|
||||
|
||||
class Train_ms_config:
|
||||
"""训练配置"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config_path: str,
|
||||
env: Dict[str, any],
|
||||
base: Dict[str, any],
|
||||
model: str,
|
||||
num_workers: int,
|
||||
spec_cache: bool,
|
||||
keep_ckpts: int,
|
||||
):
|
||||
self.env = env # 需要加载的环境变量
|
||||
self.base = base # 底模配置
|
||||
self.model = (
|
||||
model # 训练模型存储目录,该路径为相对于dataset_path的路径,而非项目根目录
|
||||
)
|
||||
self.config_path = config_path # 配置文件路径
|
||||
self.num_workers = num_workers # worker数量
|
||||
self.spec_cache = spec_cache # 是否启用spec缓存
|
||||
self.keep_ckpts = keep_ckpts # ckpt数量
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, dataset_path: str, data: Dict[str, any]):
|
||||
# data["model"] = os.path.join(dataset_path, data["model"])
|
||||
data["config_path"] = os.path.join(dataset_path, data["config_path"])
|
||||
|
||||
return cls(**data)
|
||||
|
||||
|
||||
class Webui_config:
|
||||
"""webui 配置"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
device: str,
|
||||
model: str,
|
||||
config_path: str,
|
||||
language_identification_library: str,
|
||||
port: int = 7860,
|
||||
share: bool = False,
|
||||
debug: bool = False,
|
||||
):
|
||||
self.device: str = device
|
||||
self.model: str = model # 端口号
|
||||
self.config_path: str = config_path # 是否公开部署,对外网开放
|
||||
self.port: int = port # 是否开启debug模式
|
||||
self.share: bool = share # 模型路径
|
||||
self.debug: bool = debug # 配置文件路径
|
||||
self.language_identification_library: str = (
|
||||
language_identification_library # 语种识别库
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, dataset_path: str, data: Dict[str, any]):
|
||||
data["config_path"] = os.path.join(dataset_path, data["config_path"])
|
||||
data["model"] = os.path.join(dataset_path, data["model"])
|
||||
return cls(**data)
|
||||
|
||||
|
||||
class Server_config:
|
||||
def __init__(
|
||||
self, models: List[Dict[str, any]], port: int = 5000, device: str = "cuda"
|
||||
):
|
||||
self.models: List[Dict[str, any]] = models # 需要加载的所有模型的配置
|
||||
self.port: int = port # 端口号
|
||||
self.device: str = device # 模型默认使用设备
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, data: Dict[str, any]):
|
||||
return cls(**data)
|
||||
|
||||
|
||||
class Translate_config:
|
||||
"""翻译api配置"""
|
||||
|
||||
def __init__(self, app_key: str, secret_key: str):
|
||||
self.app_key = app_key
|
||||
self.secret_key = secret_key
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, data: Dict[str, any]):
|
||||
return cls(**data)
|
||||
|
||||
|
||||
class Config:
|
||||
def __init__(self, config_path: str):
|
||||
if not os.path.isfile(config_path) and os.path.isfile("default_config.yml"):
|
||||
shutil.copy(src="default_config.yml", dst=config_path)
|
||||
print(
|
||||
f"已根据默认配置文件default_config.yml生成配置文件{config_path}。请按该配置文件的说明进行配置后重新运行。"
|
||||
)
|
||||
print("如无特殊需求,请勿修改default_config.yml或备份该文件。")
|
||||
sys.exit(0)
|
||||
print(os.getcwd())
|
||||
with open(file=config_path, mode="r", encoding="utf-8") as file:
|
||||
yaml_config: Dict[str, any] = yaml.safe_load(file.read())
|
||||
dataset_path: str = yaml_config["dataset_path"]
|
||||
openi_token: str = yaml_config["openi_token"]
|
||||
self.dataset_path: str = dataset_path
|
||||
self.mirror: str = yaml_config["mirror"]
|
||||
self.openi_token: str = openi_token
|
||||
self.resample_config: Resample_config = Resample_config.from_dict(
|
||||
dataset_path, yaml_config["resample"]
|
||||
)
|
||||
self.preprocess_text_config: Preprocess_text_config = (
|
||||
Preprocess_text_config.from_dict(
|
||||
dataset_path, yaml_config["preprocess_text"]
|
||||
)
|
||||
)
|
||||
self.bert_gen_config: Bert_gen_config = Bert_gen_config.from_dict(
|
||||
dataset_path, yaml_config["bert_gen"]
|
||||
)
|
||||
self.emo_gen_config: Emo_gen_config = Emo_gen_config.from_dict(
|
||||
dataset_path, yaml_config["emo_gen"]
|
||||
)
|
||||
self.train_ms_config: Train_ms_config = Train_ms_config.from_dict(
|
||||
dataset_path, yaml_config["train_ms"]
|
||||
)
|
||||
self.webui_config: Webui_config = Webui_config.from_dict(
|
||||
dataset_path, yaml_config["webui"]
|
||||
)
|
||||
self.server_config: Server_config = Server_config.from_dict(
|
||||
yaml_config["server"]
|
||||
)
|
||||
self.translate_config: Translate_config = Translate_config.from_dict(
|
||||
yaml_config["translate"]
|
||||
)
|
||||
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
# 为避免与以前的config.json起冲突,将其更名如下
|
||||
parser.add_argument("-y", "--yml_config", type=str, default="./utils/bert_vits2/config.yml")
|
||||
args, _ = parser.parse_known_args()
|
||||
config = Config(args.yml_config)
|
|
@ -0,0 +1,180 @@
|
|||
# 全局配置
|
||||
# 对于希望在同一时间使用多个配置文件的情况,例如两个GPU同时跑两个训练集:通过环境变量指定配置文件,不指定则默认为./config.yml
|
||||
|
||||
# 拟提供通用路径配置,统一存放数据,避免数据放得很乱
|
||||
# 每个数据集与其对应的模型存放至统一路径下,后续所有的路径配置均为相对于datasetPath的路径
|
||||
# 不填或者填空则路径为相对于项目根目录的路径
|
||||
# dataset_path: "data/Genshin-KL"
|
||||
dataset_path: "utils/bert_vits2/data/mix"
|
||||
|
||||
# 模型镜像源,默认huggingface,使用openi镜像源需指定openi_token
|
||||
mirror: ""
|
||||
openi_token: "" # openi token
|
||||
|
||||
# resample 音频重采样配置
|
||||
# 注意, “:” 后需要加空格
|
||||
resample:
|
||||
# 目标重采样率
|
||||
sampling_rate: 44100
|
||||
# sampling_rate: 16000
|
||||
# 音频文件输入路径,重采样会将该路径下所有.wav音频文件重采样
|
||||
# 请填入相对于datasetPath的相对路径
|
||||
in_dir: "audios/raw" # 相对于根目录的路径为 /datasetPath/in_dir
|
||||
# 音频文件重采样后输出路径
|
||||
out_dir: "audios/wavs"
|
||||
|
||||
|
||||
# preprocess_text 数据集预处理相关配置
|
||||
# 注意, “:” 后需要加空格
|
||||
preprocess_text:
|
||||
# 原始文本文件路径,文本格式应为{wav_path}|{speaker_name}|{language}|{text}。
|
||||
transcription_path: "filelists/你的数据集文本.list"
|
||||
# 数据清洗后文本路径,可以不填。不填则将在原始文本目录生成
|
||||
cleaned_path: ""
|
||||
# 训练集路径
|
||||
train_path: "filelists/train.list"
|
||||
# 验证集路径
|
||||
val_path: "filelists/val.list"
|
||||
# 配置文件路径
|
||||
config_path: "config.json"
|
||||
# 每个语言的验证集条数
|
||||
val_per_lang: 4
|
||||
# 验证集最大条数,多于的会被截断并放到训练集中
|
||||
max_val_total: 12
|
||||
# 是否进行数据清洗
|
||||
clean: true
|
||||
|
||||
|
||||
# bert_gen 相关配置
|
||||
# 注意, “:” 后需要加空格
|
||||
bert_gen:
|
||||
# 训练数据集配置文件路径
|
||||
config_path: "config.json"
|
||||
# 并行数
|
||||
num_processes: 4
|
||||
# 使用设备:可选项 "cuda" 显卡推理,"cpu" cpu推理
|
||||
# 该选项同时决定了get_bert_feature的默认设备
|
||||
device: "cuda"
|
||||
# 使用多卡推理
|
||||
use_multi_device: false
|
||||
|
||||
# emo_gen 相关配置
|
||||
# 注意, “:” 后需要加空格
|
||||
emo_gen:
|
||||
# 训练数据集配置文件路径
|
||||
config_path: "config.json"
|
||||
# 并行数
|
||||
num_processes: 4
|
||||
# 使用设备:可选项 "cuda" 显卡推理,"cpu" cpu推理
|
||||
device: "cuda"
|
||||
# 使用多卡推理
|
||||
use_multi_device: false
|
||||
|
||||
# train 训练配置
|
||||
# 注意, “:” 后需要加空格
|
||||
train_ms:
|
||||
env:
|
||||
MASTER_ADDR: "localhost"
|
||||
MASTER_PORT: 10086
|
||||
WORLD_SIZE: 1
|
||||
LOCAL_RANK: 0
|
||||
RANK: 0
|
||||
# 可以填写任意名的环境变量
|
||||
# THE_ENV_VAR_YOU_NEED_TO_USE: "1234567"
|
||||
# 底模设置
|
||||
base:
|
||||
use_base_model: false
|
||||
repo_id: "Stardust_minus/Bert-VITS2"
|
||||
model_image: "Bert-VITS2_2.3底模" # openi网页的模型名
|
||||
# 训练模型存储目录:与旧版本的区别,原先数据集是存放在logs/model_name下的,现在改为统一存放在Data/你的数据集/models下
|
||||
model: "models"
|
||||
# 配置文件路径
|
||||
config_path: "configs/config.json"
|
||||
# 训练使用的worker,不建议超过CPU核心数
|
||||
num_workers: 16
|
||||
# 关闭此项可以节约接近70%的磁盘空间,但是可能导致实际训练速度变慢和更高的CPU使用率。
|
||||
spec_cache: False
|
||||
# 保存的检查点数量,多于此数目的权重会被删除来节省空间。
|
||||
keep_ckpts: 3
|
||||
|
||||
|
||||
# webui webui配置
|
||||
# 注意, “:” 后需要加空格
|
||||
webui:
|
||||
# 推理设备
|
||||
device: "cuda"
|
||||
# 模型路径
|
||||
# model: "models/G_32000.pth"
|
||||
model: "models/G_250000.pth"
|
||||
# 配置文件路径
|
||||
config_path: "configs/config.json"
|
||||
# 端口号
|
||||
port: 7861
|
||||
# 是否公开部署,对外网开放
|
||||
share: false
|
||||
# 是否开启debug模式
|
||||
debug: false
|
||||
# 语种识别库,可选langid, fastlid
|
||||
language_identification_library: "langid"
|
||||
|
||||
|
||||
# server-fastapi配置
|
||||
# 注意, “:” 后需要加空格
|
||||
# 注意,本配置下的所有配置均为相对于根目录的路径
|
||||
server:
|
||||
# 端口号
|
||||
port: 5005
|
||||
# 模型默认使用设备:但是当前并没有实现这个配置。
|
||||
device: "cuda"
|
||||
# 需要加载的所有模型的配置,可以填多个模型,也可以不填模型,等网页成功后手动加载模型
|
||||
# 不加载模型的配置格式:删除默认给的两个模型配置,给models赋值 [ ],也就是空列表。参考模型2的speakers 即 models: [ ]
|
||||
# 注意,所有模型都必须正确配置model与config的路径,空路径会导致加载错误。
|
||||
# 也可以不填模型,等网页加载成功后手动填写models。
|
||||
models:
|
||||
- # 模型的路径
|
||||
model: ""
|
||||
# 模型config.json的路径
|
||||
config: ""
|
||||
# 模型使用设备,若填写则会覆盖默认配置
|
||||
device: "cuda"
|
||||
# 模型默认使用的语言
|
||||
language: "ZH"
|
||||
# 模型人物默认参数
|
||||
# 不必填写所有人物,不填的使用默认值
|
||||
# 暂时不用填写,当前尚未实现按人区分配置
|
||||
speakers:
|
||||
- speaker: "科比"
|
||||
sdp_ratio: 0.2
|
||||
noise_scale: 0.6
|
||||
noise_scale_w: 0.8
|
||||
length_scale: 1
|
||||
- speaker: "五条悟"
|
||||
sdp_ratio: 0.3
|
||||
noise_scale: 0.7
|
||||
noise_scale_w: 0.8
|
||||
length_scale: 0.5
|
||||
- speaker: "安倍晋三"
|
||||
sdp_ratio: 0.2
|
||||
noise_scale: 0.6
|
||||
noise_scale_w: 0.8
|
||||
length_scale: 1.2
|
||||
- # 模型的路径
|
||||
model: ""
|
||||
# 模型config.json的路径
|
||||
config: ""
|
||||
# 模型使用设备,若填写则会覆盖默认配置
|
||||
device: "cpu"
|
||||
# 模型默认使用的语言
|
||||
language: "JP"
|
||||
# 模型人物默认参数
|
||||
# 不必填写所有人物,不填的使用默认值
|
||||
speakers: [ ] # 也可以不填
|
||||
|
||||
# 百度翻译开放平台 api配置
|
||||
# api接入文档 https://api.fanyi.baidu.com/doc/21
|
||||
# 请不要在github等网站公开分享你的app id 与 key
|
||||
translate:
|
||||
# 你的APPID
|
||||
"app_key": ""
|
||||
# 你的密钥
|
||||
"secret_key": ""
|
|
@ -0,0 +1,112 @@
|
|||
{
|
||||
"train": {
|
||||
"log_interval": 400,
|
||||
"eval_interval": 2000,
|
||||
"seed": 42,
|
||||
"epochs": 1000,
|
||||
"learning_rate": 0.00002,
|
||||
"betas": [
|
||||
0.8,
|
||||
0.99
|
||||
],
|
||||
"eps": 1e-09,
|
||||
"batch_size": 24,
|
||||
"bf16_run": false,
|
||||
"lr_decay": 0.99995,
|
||||
"segment_size": 16384,
|
||||
"init_lr_ratio": 1,
|
||||
"warmup_epochs": 0,
|
||||
"c_mel": 45,
|
||||
"c_kl": 1.0,
|
||||
"c_commit": 100,
|
||||
"skip_optimizer": true,
|
||||
"freeze_ZH_bert": false,
|
||||
"freeze_JP_bert": false,
|
||||
"freeze_EN_bert": false,
|
||||
"freeze_emo": false
|
||||
},
|
||||
"data": {
|
||||
"training_files": "data/mix/train.list",
|
||||
"validation_files": "data/mix/val.list",
|
||||
"max_wav_value": 32768.0,
|
||||
"sampling_rate": 44100,
|
||||
"filter_length": 2048,
|
||||
"hop_length": 512,
|
||||
"win_length": 2048,
|
||||
"n_mel_channels": 128,
|
||||
"mel_fmin": 0.0,
|
||||
"mel_fmax": null,
|
||||
"add_blank": true,
|
||||
"n_speakers": 5,
|
||||
"cleaned_text": true,
|
||||
"spk2id": {
|
||||
"可莉": 0,
|
||||
"钟离": 1,
|
||||
"八重神子": 2,
|
||||
"枫原万叶": 3,
|
||||
"胡桃": 4
|
||||
}
|
||||
},
|
||||
"model": {
|
||||
"use_spk_conditioned_encoder": true,
|
||||
"use_noise_scaled_mas": true,
|
||||
"use_mel_posterior_encoder": false,
|
||||
"use_duration_discriminator": true,
|
||||
"inter_channels": 192,
|
||||
"hidden_channels": 192,
|
||||
"filter_channels": 768,
|
||||
"n_heads": 2,
|
||||
"n_layers": 6,
|
||||
"kernel_size": 3,
|
||||
"p_dropout": 0.1,
|
||||
"resblock": "1",
|
||||
"resblock_kernel_sizes": [
|
||||
3,
|
||||
7,
|
||||
11
|
||||
],
|
||||
"resblock_dilation_sizes": [
|
||||
[
|
||||
1,
|
||||
3,
|
||||
5
|
||||
],
|
||||
[
|
||||
1,
|
||||
3,
|
||||
5
|
||||
],
|
||||
[
|
||||
1,
|
||||
3,
|
||||
5
|
||||
]
|
||||
],
|
||||
"upsample_rates": [
|
||||
8,
|
||||
8,
|
||||
2,
|
||||
2,
|
||||
2
|
||||
],
|
||||
"upsample_initial_channel": 512,
|
||||
"upsample_kernel_sizes": [
|
||||
16,
|
||||
16,
|
||||
8,
|
||||
2,
|
||||
2
|
||||
],
|
||||
"n_layers_q": 3,
|
||||
"use_spectral_norm": false,
|
||||
"gin_channels": 512,
|
||||
"slm": {
|
||||
"model": "./slm/wavlm-base-plus",
|
||||
"sr": 16000,
|
||||
"hidden": 768,
|
||||
"nlayers": 13,
|
||||
"initial_channel": 64
|
||||
}
|
||||
},
|
||||
"version": "2.3"
|
||||
}
|
|
@ -0,0 +1,439 @@
|
|||
"""
|
||||
版本管理、兼容推理及模型加载实现。
|
||||
版本说明:
|
||||
1. 版本号与github的release版本号对应,使用哪个release版本训练的模型即对应其版本号
|
||||
2. 请在模型的config.json中显示声明版本号,添加一个字段"version" : "你的版本号"
|
||||
特殊版本说明:
|
||||
1.1.1-fix: 1.1.1版本训练的模型,但是在推理时使用dev的日语修复
|
||||
2.3:当前版本
|
||||
"""
|
||||
import torch
|
||||
from . import commons
|
||||
from .text import cleaned_text_to_sequence, get_bert
|
||||
|
||||
# from clap_wrapper import get_clap_audio_feature, get_clap_text_feature
|
||||
from typing import Union
|
||||
from .text.cleaner import clean_text
|
||||
from . import utils
|
||||
|
||||
from .models import SynthesizerTrn
|
||||
from .text.symbols import symbols
|
||||
|
||||
# from utils.tts.bert_vits2.oldVersion.V220.models import SynthesizerTrn as V220SynthesizerTrn
|
||||
# from utils.tts.bert_vits2.oldVersion.V220.text import symbols as V220symbols
|
||||
# from utils.tts.bert_vits2.oldVersion.V210.models import SynthesizerTrn as V210SynthesizerTrn
|
||||
# from utils.tts.bert_vits2.oldVersion.V210.text import symbols as V210symbols
|
||||
# from utils.tts.bert_vits2.oldVersion.V200.models import SynthesizerTrn as V200SynthesizerTrn
|
||||
# from utils.tts.bert_vits2.oldVersion.V200.text import symbols as V200symbols
|
||||
# from utils.tts.bert_vits2.oldVersion.V111.models import SynthesizerTrn as V111SynthesizerTrn
|
||||
# from utils.tts.bert_vits2.oldVersion.V111.text import symbols as V111symbols
|
||||
# from utils.tts.bert_vits2.oldVersion.V110.models import SynthesizerTrn as V110SynthesizerTrn
|
||||
# from utils.tts.bert_vits2.oldVersion.V110.text import symbols as V110symbols
|
||||
# from utils.tts.bert_vits2.oldVersion.V101.models import SynthesizerTrn as V101SynthesizerTrn
|
||||
# from utils.tts.bert_vits2.oldVersion.V101.text import symbols as V101symbols
|
||||
|
||||
# from oldVersion import V111, V110, V101, V200, V210, V220
|
||||
|
||||
# 当前版本信息
|
||||
latest_version = "2.3"
|
||||
|
||||
# 版本兼容
|
||||
# SynthesizerTrnMap = {
|
||||
# "2.2": V220SynthesizerTrn,
|
||||
# "2.1": V210SynthesizerTrn,
|
||||
# "2.0.2-fix": V200SynthesizerTrn,
|
||||
# "2.0.1": V200SynthesizerTrn,
|
||||
# "2.0": V200SynthesizerTrn,
|
||||
# "1.1.1-fix": V111SynthesizerTrn,
|
||||
# "1.1.1": V111SynthesizerTrn,
|
||||
# "1.1": V110SynthesizerTrn,
|
||||
# "1.1.0": V110SynthesizerTrn,
|
||||
# "1.0.1": V101SynthesizerTrn,
|
||||
# "1.0": V101SynthesizerTrn,
|
||||
# "1.0.0": V101SynthesizerTrn,
|
||||
# }
|
||||
|
||||
# symbolsMap = {
|
||||
# "2.2": V220symbols,
|
||||
# "2.1": V210symbols,
|
||||
# "2.0.2-fix": V200symbols,
|
||||
# "2.0.1": V200symbols,
|
||||
# "2.0": V200symbols,
|
||||
# "1.1.1-fix": V111symbols,
|
||||
# "1.1.1": V111symbols,
|
||||
# "1.1": V110symbols,
|
||||
# "1.1.0": V110symbols,
|
||||
# "1.0.1": V101symbols,
|
||||
# "1.0": V101symbols,
|
||||
# "1.0.0": V101symbols,
|
||||
# }
|
||||
|
||||
|
||||
# def get_emo_(reference_audio, emotion, sid):
|
||||
# emo = (
|
||||
# torch.from_numpy(get_emo(reference_audio))
|
||||
# if reference_audio and emotion == -1
|
||||
# else torch.FloatTensor(
|
||||
# np.load(f"emo_clustering/{sid}/cluster_center_{emotion}.npy")
|
||||
# )
|
||||
# )
|
||||
# return emo
|
||||
|
||||
|
||||
def get_net_g(model_path: str, version: str, device: str, hps):
|
||||
if version != latest_version:
|
||||
net_g = SynthesizerTrnMap[version](
|
||||
len(symbolsMap[version]),
|
||||
hps.data.filter_length // 2 + 1,
|
||||
hps.train.segment_size // hps.data.hop_length,
|
||||
n_speakers=hps.data.n_speakers,
|
||||
**hps.model,
|
||||
).to(device)
|
||||
else:
|
||||
# 当前版本模型 net_g
|
||||
net_g = SynthesizerTrn(
|
||||
len(symbols),
|
||||
hps.data.filter_length // 2 + 1,
|
||||
hps.train.segment_size // hps.data.hop_length,
|
||||
n_speakers=hps.data.n_speakers,
|
||||
**hps.model,
|
||||
).to(device)
|
||||
_ = net_g.eval()
|
||||
_ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True)
|
||||
return net_g
|
||||
|
||||
|
||||
def get_text(text, language_str, hps, device, style_text=None, style_weight=0.7):
|
||||
style_text = None if style_text == "" else style_text
|
||||
# 在此处实现当前版本的get_text
|
||||
norm_text, phone, tone, word2ph = clean_text(text, language_str)
|
||||
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
|
||||
|
||||
if hps.data.add_blank:
|
||||
phone = commons.intersperse(phone, 0)
|
||||
tone = commons.intersperse(tone, 0)
|
||||
language = commons.intersperse(language, 0)
|
||||
for i in range(len(word2ph)):
|
||||
word2ph[i] = word2ph[i] * 2
|
||||
word2ph[0] += 1
|
||||
bert_ori = get_bert(
|
||||
norm_text, word2ph, language_str, device, style_text, style_weight
|
||||
)
|
||||
del word2ph
|
||||
assert bert_ori.shape[-1] == len(phone), phone
|
||||
|
||||
if language_str == "ZH":
|
||||
bert = bert_ori
|
||||
ja_bert = torch.randn(1024, len(phone))
|
||||
en_bert = torch.randn(1024, len(phone))
|
||||
elif language_str == "JP":
|
||||
bert = torch.randn(1024, len(phone))
|
||||
ja_bert = bert_ori
|
||||
en_bert = torch.randn(1024, len(phone))
|
||||
elif language_str == "EN":
|
||||
bert = torch.randn(1024, len(phone))
|
||||
ja_bert = torch.randn(1024, len(phone))
|
||||
en_bert = bert_ori
|
||||
else:
|
||||
raise ValueError("language_str should be ZH, JP or EN")
|
||||
|
||||
assert bert.shape[-1] == len(
|
||||
phone
|
||||
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
|
||||
|
||||
phone = torch.LongTensor(phone)
|
||||
tone = torch.LongTensor(tone)
|
||||
language = torch.LongTensor(language)
|
||||
return bert, ja_bert, en_bert, phone, tone, language
|
||||
|
||||
|
||||
def infer(
|
||||
text,
|
||||
emotion: Union[int, str],
|
||||
sdp_ratio,
|
||||
noise_scale,
|
||||
noise_scale_w,
|
||||
length_scale,
|
||||
sid,
|
||||
language,
|
||||
hps,
|
||||
net_g,
|
||||
device,
|
||||
reference_audio=None,
|
||||
skip_start=False,
|
||||
skip_end=False,
|
||||
style_text=None,
|
||||
style_weight=0.7,
|
||||
):
|
||||
# # 2.2版本参数位置变了
|
||||
# inferMap_V4 = {
|
||||
# "2.2": V220.infer,
|
||||
# }
|
||||
# # 2.1 参数新增 emotion reference_audio skip_start skip_end
|
||||
# inferMap_V3 = {
|
||||
# "2.1": V210.infer,
|
||||
# }
|
||||
# # 支持中日英三语版本
|
||||
# inferMap_V2 = {
|
||||
# "2.0.2-fix": V200.infer,
|
||||
# "2.0.1": V200.infer,
|
||||
# "2.0": V200.infer,
|
||||
# "1.1.1-fix": V111.infer_fix,
|
||||
# "1.1.1": V111.infer,
|
||||
# "1.1": V110.infer,
|
||||
# "1.1.0": V110.infer,
|
||||
# }
|
||||
# # 仅支持中文版本
|
||||
# # 在测试中,并未发现两个版本的模型不能互相通用
|
||||
# inferMap_V1 = {
|
||||
# "1.0.1": V101.infer,
|
||||
# "1.0": V101.infer,
|
||||
# "1.0.0": V101.infer,
|
||||
# }
|
||||
version = hps.version if hasattr(hps, "version") else latest_version
|
||||
# 非当前版本,根据版本号选择合适的infer
|
||||
if version != latest_version:
|
||||
if version in inferMap_V4.keys():
|
||||
return inferMap_V4[version](
|
||||
text,
|
||||
emotion,
|
||||
sdp_ratio,
|
||||
noise_scale,
|
||||
noise_scale_w,
|
||||
length_scale,
|
||||
sid,
|
||||
language,
|
||||
hps,
|
||||
net_g,
|
||||
device,
|
||||
reference_audio,
|
||||
skip_start,
|
||||
skip_end,
|
||||
style_text,
|
||||
style_weight,
|
||||
)
|
||||
if version in inferMap_V3.keys():
|
||||
return inferMap_V3[version](
|
||||
text,
|
||||
sdp_ratio,
|
||||
noise_scale,
|
||||
noise_scale_w,
|
||||
length_scale,
|
||||
sid,
|
||||
language,
|
||||
hps,
|
||||
net_g,
|
||||
device,
|
||||
reference_audio,
|
||||
emotion,
|
||||
skip_start,
|
||||
skip_end,
|
||||
style_text,
|
||||
style_weight,
|
||||
)
|
||||
if version in inferMap_V2.keys():
|
||||
return inferMap_V2[version](
|
||||
text,
|
||||
sdp_ratio,
|
||||
noise_scale,
|
||||
noise_scale_w,
|
||||
length_scale,
|
||||
sid,
|
||||
language,
|
||||
hps,
|
||||
net_g,
|
||||
device,
|
||||
)
|
||||
if version in inferMap_V1.keys():
|
||||
return inferMap_V1[version](
|
||||
text,
|
||||
sdp_ratio,
|
||||
noise_scale,
|
||||
noise_scale_w,
|
||||
length_scale,
|
||||
sid,
|
||||
hps,
|
||||
net_g,
|
||||
device,
|
||||
)
|
||||
# 在此处实现当前版本的推理
|
||||
# emo = get_emo_(reference_audio, emotion, sid)
|
||||
# if isinstance(reference_audio, np.ndarray):
|
||||
# emo = get_clap_audio_feature(reference_audio, device)
|
||||
# else:
|
||||
# emo = get_clap_text_feature(emotion, device)
|
||||
# emo = torch.squeeze(emo, dim=1)
|
||||
|
||||
bert, ja_bert, en_bert, phones, tones, lang_ids = get_text(
|
||||
text,
|
||||
language,
|
||||
hps,
|
||||
device,
|
||||
style_text=style_text,
|
||||
style_weight=style_weight,
|
||||
)
|
||||
if skip_start:
|
||||
phones = phones[3:]
|
||||
tones = tones[3:]
|
||||
lang_ids = lang_ids[3:]
|
||||
bert = bert[:, 3:]
|
||||
ja_bert = ja_bert[:, 3:]
|
||||
en_bert = en_bert[:, 3:]
|
||||
if skip_end:
|
||||
phones = phones[:-2]
|
||||
tones = tones[:-2]
|
||||
lang_ids = lang_ids[:-2]
|
||||
bert = bert[:, :-2]
|
||||
ja_bert = ja_bert[:, :-2]
|
||||
en_bert = en_bert[:, :-2]
|
||||
with torch.no_grad():
|
||||
x_tst = phones.to(device).unsqueeze(0)
|
||||
tones = tones.to(device).unsqueeze(0)
|
||||
lang_ids = lang_ids.to(device).unsqueeze(0)
|
||||
bert = bert.to(device).unsqueeze(0)
|
||||
ja_bert = ja_bert.to(device).unsqueeze(0)
|
||||
en_bert = en_bert.to(device).unsqueeze(0)
|
||||
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
|
||||
# emo = emo.to(device).unsqueeze(0)
|
||||
del phones
|
||||
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
|
||||
audio = (
|
||||
net_g.infer(
|
||||
x_tst,
|
||||
x_tst_lengths,
|
||||
speakers,
|
||||
tones,
|
||||
lang_ids,
|
||||
bert,
|
||||
ja_bert,
|
||||
en_bert,
|
||||
sdp_ratio=sdp_ratio,
|
||||
noise_scale=noise_scale,
|
||||
noise_scale_w=noise_scale_w,
|
||||
length_scale=length_scale,
|
||||
en_ratio=1.0
|
||||
)[0][0, 0]
|
||||
.data.cpu()
|
||||
.float()
|
||||
.numpy()
|
||||
)
|
||||
del (
|
||||
x_tst,
|
||||
tones,
|
||||
lang_ids,
|
||||
bert,
|
||||
x_tst_lengths,
|
||||
speakers,
|
||||
ja_bert,
|
||||
en_bert,
|
||||
) # , emo
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
return audio
|
||||
|
||||
|
||||
def infer_multilang(
|
||||
text,
|
||||
sdp_ratio,
|
||||
noise_scale,
|
||||
noise_scale_w,
|
||||
length_scale,
|
||||
sid,
|
||||
language,
|
||||
hps,
|
||||
net_g,
|
||||
device,
|
||||
reference_audio=None,
|
||||
emotion=None,
|
||||
skip_start=False,
|
||||
skip_end=False,
|
||||
en_ratio=1.0
|
||||
):
|
||||
bert, ja_bert, en_bert, phones, tones, lang_ids = [], [], [], [], [], []
|
||||
# emo = get_emo_(reference_audio, emotion, sid)
|
||||
# if isinstance(reference_audio, np.ndarray):
|
||||
# emo = get_clap_audio_feature(reference_audio, device)
|
||||
# else:
|
||||
# emo = get_clap_text_feature(emotion, device)
|
||||
# emo = torch.squeeze(emo, dim=1)
|
||||
for idx, (txt, lang) in enumerate(zip(text, language)):
|
||||
_skip_start = (idx != 0) or (skip_start and idx == 0)
|
||||
_skip_end = (idx != len(language) - 1) or skip_end
|
||||
(
|
||||
temp_bert,
|
||||
temp_ja_bert,
|
||||
temp_en_bert,
|
||||
temp_phones,
|
||||
temp_tones,
|
||||
temp_lang_ids,
|
||||
) = get_text(txt, lang, hps, device)
|
||||
if _skip_start:
|
||||
temp_bert = temp_bert[:, 3:]
|
||||
temp_ja_bert = temp_ja_bert[:, 3:]
|
||||
temp_en_bert = temp_en_bert[:, 3:]
|
||||
temp_phones = temp_phones[3:]
|
||||
temp_tones = temp_tones[3:]
|
||||
temp_lang_ids = temp_lang_ids[3:]
|
||||
if _skip_end:
|
||||
temp_bert = temp_bert[:, :-2]
|
||||
temp_ja_bert = temp_ja_bert[:, :-2]
|
||||
temp_en_bert = temp_en_bert[:, :-2]
|
||||
temp_phones = temp_phones[:-2]
|
||||
temp_tones = temp_tones[:-2]
|
||||
temp_lang_ids = temp_lang_ids[:-2]
|
||||
bert.append(temp_bert)
|
||||
ja_bert.append(temp_ja_bert)
|
||||
en_bert.append(temp_en_bert)
|
||||
phones.append(temp_phones)
|
||||
tones.append(temp_tones)
|
||||
lang_ids.append(temp_lang_ids)
|
||||
bert = torch.concatenate(bert, dim=1)
|
||||
ja_bert = torch.concatenate(ja_bert, dim=1)
|
||||
en_bert = torch.concatenate(en_bert, dim=1)
|
||||
phones = torch.concatenate(phones, dim=0)
|
||||
tones = torch.concatenate(tones, dim=0)
|
||||
lang_ids = torch.concatenate(lang_ids, dim=0)
|
||||
with torch.no_grad():
|
||||
x_tst = phones.to(device).unsqueeze(0)
|
||||
tones = tones.to(device).unsqueeze(0)
|
||||
lang_ids = lang_ids.to(device).unsqueeze(0)
|
||||
bert = bert.to(device).unsqueeze(0)
|
||||
ja_bert = ja_bert.to(device).unsqueeze(0)
|
||||
en_bert = en_bert.to(device).unsqueeze(0)
|
||||
# emo = emo.to(device).unsqueeze(0)
|
||||
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
|
||||
del phones
|
||||
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
|
||||
audio = (
|
||||
net_g.infer(
|
||||
x_tst,
|
||||
x_tst_lengths,
|
||||
speakers,
|
||||
tones,
|
||||
lang_ids,
|
||||
bert,
|
||||
ja_bert,
|
||||
en_bert,
|
||||
sdp_ratio=sdp_ratio,
|
||||
noise_scale=noise_scale,
|
||||
noise_scale_w=noise_scale_w,
|
||||
length_scale=length_scale,
|
||||
en_ratio=en_ratio
|
||||
)[0][0, 0]
|
||||
.data.cpu()
|
||||
.float()
|
||||
.numpy()
|
||||
)
|
||||
del (
|
||||
x_tst,
|
||||
tones,
|
||||
lang_ids,
|
||||
bert,
|
||||
x_tst_lengths,
|
||||
speakers,
|
||||
ja_bert,
|
||||
en_bert,
|
||||
) # , emo
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
return audio
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,580 @@
|
|||
import math
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from torch.nn import Conv1d
|
||||
from torch.nn.utils import weight_norm, remove_weight_norm
|
||||
|
||||
from . import commons
|
||||
from .commons import init_weights, get_padding
|
||||
from .transforms import piecewise_rational_quadratic_transform
|
||||
from .attentions import Encoder
|
||||
|
||||
LRELU_SLOPE = 0.1
|
||||
|
||||
|
||||
class LayerNorm(nn.Module):
|
||||
def __init__(self, channels, eps=1e-5):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.eps = eps
|
||||
|
||||
self.gamma = nn.Parameter(torch.ones(channels))
|
||||
self.beta = nn.Parameter(torch.zeros(channels))
|
||||
|
||||
def forward(self, x):
|
||||
x = x.transpose(1, -1)
|
||||
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
||||
return x.transpose(1, -1)
|
||||
|
||||
|
||||
class ConvReluNorm(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
hidden_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
n_layers,
|
||||
p_dropout,
|
||||
):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.out_channels = out_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.n_layers = n_layers
|
||||
self.p_dropout = p_dropout
|
||||
assert n_layers > 1, "Number of layers should be larger than 0."
|
||||
|
||||
self.conv_layers = nn.ModuleList()
|
||||
self.norm_layers = nn.ModuleList()
|
||||
self.conv_layers.append(
|
||||
nn.Conv1d(
|
||||
in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
|
||||
)
|
||||
)
|
||||
self.norm_layers.append(LayerNorm(hidden_channels))
|
||||
self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
|
||||
for _ in range(n_layers - 1):
|
||||
self.conv_layers.append(
|
||||
nn.Conv1d(
|
||||
hidden_channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
padding=kernel_size // 2,
|
||||
)
|
||||
)
|
||||
self.norm_layers.append(LayerNorm(hidden_channels))
|
||||
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
||||
self.proj.weight.data.zero_()
|
||||
self.proj.bias.data.zero_()
|
||||
|
||||
def forward(self, x, x_mask):
|
||||
x_org = x
|
||||
for i in range(self.n_layers):
|
||||
x = self.conv_layers[i](x * x_mask)
|
||||
x = self.norm_layers[i](x)
|
||||
x = self.relu_drop(x)
|
||||
x = x_org + self.proj(x)
|
||||
return x * x_mask
|
||||
|
||||
|
||||
class DDSConv(nn.Module):
|
||||
"""
|
||||
Dilated and Depth-Separable Convolution
|
||||
"""
|
||||
|
||||
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.kernel_size = kernel_size
|
||||
self.n_layers = n_layers
|
||||
self.p_dropout = p_dropout
|
||||
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
self.convs_sep = nn.ModuleList()
|
||||
self.convs_1x1 = nn.ModuleList()
|
||||
self.norms_1 = nn.ModuleList()
|
||||
self.norms_2 = nn.ModuleList()
|
||||
for i in range(n_layers):
|
||||
dilation = kernel_size**i
|
||||
padding = (kernel_size * dilation - dilation) // 2
|
||||
self.convs_sep.append(
|
||||
nn.Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
groups=channels,
|
||||
dilation=dilation,
|
||||
padding=padding,
|
||||
)
|
||||
)
|
||||
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
||||
self.norms_1.append(LayerNorm(channels))
|
||||
self.norms_2.append(LayerNorm(channels))
|
||||
|
||||
def forward(self, x, x_mask, g=None):
|
||||
if g is not None:
|
||||
x = x + g
|
||||
for i in range(self.n_layers):
|
||||
y = self.convs_sep[i](x * x_mask)
|
||||
y = self.norms_1[i](y)
|
||||
y = F.gelu(y)
|
||||
y = self.convs_1x1[i](y)
|
||||
y = self.norms_2[i](y)
|
||||
y = F.gelu(y)
|
||||
y = self.drop(y)
|
||||
x = x + y
|
||||
return x * x_mask
|
||||
|
||||
|
||||
class WN(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
gin_channels=0,
|
||||
p_dropout=0,
|
||||
):
|
||||
super(WN, self).__init__()
|
||||
assert kernel_size % 2 == 1
|
||||
self.hidden_channels = hidden_channels
|
||||
self.kernel_size = (kernel_size,)
|
||||
self.dilation_rate = dilation_rate
|
||||
self.n_layers = n_layers
|
||||
self.gin_channels = gin_channels
|
||||
self.p_dropout = p_dropout
|
||||
|
||||
self.in_layers = torch.nn.ModuleList()
|
||||
self.res_skip_layers = torch.nn.ModuleList()
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
|
||||
if gin_channels != 0:
|
||||
cond_layer = torch.nn.Conv1d(
|
||||
gin_channels, 2 * hidden_channels * n_layers, 1
|
||||
)
|
||||
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
|
||||
|
||||
for i in range(n_layers):
|
||||
dilation = dilation_rate**i
|
||||
padding = int((kernel_size * dilation - dilation) / 2)
|
||||
in_layer = torch.nn.Conv1d(
|
||||
hidden_channels,
|
||||
2 * hidden_channels,
|
||||
kernel_size,
|
||||
dilation=dilation,
|
||||
padding=padding,
|
||||
)
|
||||
in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
|
||||
self.in_layers.append(in_layer)
|
||||
|
||||
# last one is not necessary
|
||||
if i < n_layers - 1:
|
||||
res_skip_channels = 2 * hidden_channels
|
||||
else:
|
||||
res_skip_channels = hidden_channels
|
||||
|
||||
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
||||
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
|
||||
self.res_skip_layers.append(res_skip_layer)
|
||||
|
||||
def forward(self, x, x_mask, g=None, **kwargs):
|
||||
output = torch.zeros_like(x)
|
||||
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
||||
|
||||
if g is not None:
|
||||
g = self.cond_layer(g)
|
||||
|
||||
for i in range(self.n_layers):
|
||||
x_in = self.in_layers[i](x)
|
||||
if g is not None:
|
||||
cond_offset = i * 2 * self.hidden_channels
|
||||
g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
|
||||
else:
|
||||
g_l = torch.zeros_like(x_in)
|
||||
|
||||
acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
|
||||
acts = self.drop(acts)
|
||||
|
||||
res_skip_acts = self.res_skip_layers[i](acts)
|
||||
if i < self.n_layers - 1:
|
||||
res_acts = res_skip_acts[:, : self.hidden_channels, :]
|
||||
x = (x + res_acts) * x_mask
|
||||
output = output + res_skip_acts[:, self.hidden_channels :, :]
|
||||
else:
|
||||
output = output + res_skip_acts
|
||||
return output * x_mask
|
||||
|
||||
def remove_weight_norm(self):
|
||||
if self.gin_channels != 0:
|
||||
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
||||
for l in self.in_layers:
|
||||
torch.nn.utils.remove_weight_norm(l)
|
||||
for l in self.res_skip_layers:
|
||||
torch.nn.utils.remove_weight_norm(l)
|
||||
|
||||
|
||||
class ResBlock1(torch.nn.Module):
|
||||
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
||||
super(ResBlock1, self).__init__()
|
||||
self.convs1 = nn.ModuleList(
|
||||
[
|
||||
weight_norm(
|
||||
Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=dilation[0],
|
||||
padding=get_padding(kernel_size, dilation[0]),
|
||||
)
|
||||
),
|
||||
weight_norm(
|
||||
Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=dilation[1],
|
||||
padding=get_padding(kernel_size, dilation[1]),
|
||||
)
|
||||
),
|
||||
weight_norm(
|
||||
Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=dilation[2],
|
||||
padding=get_padding(kernel_size, dilation[2]),
|
||||
)
|
||||
),
|
||||
]
|
||||
)
|
||||
self.convs1.apply(init_weights)
|
||||
|
||||
self.convs2 = nn.ModuleList(
|
||||
[
|
||||
weight_norm(
|
||||
Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=1,
|
||||
padding=get_padding(kernel_size, 1),
|
||||
)
|
||||
),
|
||||
weight_norm(
|
||||
Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=1,
|
||||
padding=get_padding(kernel_size, 1),
|
||||
)
|
||||
),
|
||||
weight_norm(
|
||||
Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=1,
|
||||
padding=get_padding(kernel_size, 1),
|
||||
)
|
||||
),
|
||||
]
|
||||
)
|
||||
self.convs2.apply(init_weights)
|
||||
|
||||
def forward(self, x, x_mask=None):
|
||||
for c1, c2 in zip(self.convs1, self.convs2):
|
||||
xt = F.leaky_relu(x, LRELU_SLOPE)
|
||||
if x_mask is not None:
|
||||
xt = xt * x_mask
|
||||
xt = c1(xt)
|
||||
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
||||
if x_mask is not None:
|
||||
xt = xt * x_mask
|
||||
xt = c2(xt)
|
||||
x = xt + x
|
||||
if x_mask is not None:
|
||||
x = x * x_mask
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for l in self.convs1:
|
||||
remove_weight_norm(l)
|
||||
for l in self.convs2:
|
||||
remove_weight_norm(l)
|
||||
|
||||
|
||||
class ResBlock2(torch.nn.Module):
|
||||
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
||||
super(ResBlock2, self).__init__()
|
||||
self.convs = nn.ModuleList(
|
||||
[
|
||||
weight_norm(
|
||||
Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=dilation[0],
|
||||
padding=get_padding(kernel_size, dilation[0]),
|
||||
)
|
||||
),
|
||||
weight_norm(
|
||||
Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=dilation[1],
|
||||
padding=get_padding(kernel_size, dilation[1]),
|
||||
)
|
||||
),
|
||||
]
|
||||
)
|
||||
self.convs.apply(init_weights)
|
||||
|
||||
def forward(self, x, x_mask=None):
|
||||
for c in self.convs:
|
||||
xt = F.leaky_relu(x, LRELU_SLOPE)
|
||||
if x_mask is not None:
|
||||
xt = xt * x_mask
|
||||
xt = c(xt)
|
||||
x = xt + x
|
||||
if x_mask is not None:
|
||||
x = x * x_mask
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for l in self.convs:
|
||||
remove_weight_norm(l)
|
||||
|
||||
|
||||
class Log(nn.Module):
|
||||
def forward(self, x, x_mask, reverse=False, **kwargs):
|
||||
if not reverse:
|
||||
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
||||
logdet = torch.sum(-y, [1, 2])
|
||||
return y, logdet
|
||||
else:
|
||||
x = torch.exp(x) * x_mask
|
||||
return x
|
||||
|
||||
|
||||
class Flip(nn.Module):
|
||||
def forward(self, x, *args, reverse=False, **kwargs):
|
||||
x = torch.flip(x, [1])
|
||||
if not reverse:
|
||||
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
||||
return x, logdet
|
||||
else:
|
||||
return x
|
||||
|
||||
|
||||
class ElementwiseAffine(nn.Module):
|
||||
def __init__(self, channels):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.m = nn.Parameter(torch.zeros(channels, 1))
|
||||
self.logs = nn.Parameter(torch.zeros(channels, 1))
|
||||
|
||||
def forward(self, x, x_mask, reverse=False, **kwargs):
|
||||
if not reverse:
|
||||
y = self.m + torch.exp(self.logs) * x
|
||||
y = y * x_mask
|
||||
logdet = torch.sum(self.logs * x_mask, [1, 2])
|
||||
return y, logdet
|
||||
else:
|
||||
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
||||
return x
|
||||
|
||||
|
||||
class ResidualCouplingLayer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
p_dropout=0,
|
||||
gin_channels=0,
|
||||
mean_only=False,
|
||||
):
|
||||
assert channels % 2 == 0, "channels should be divisible by 2"
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.dilation_rate = dilation_rate
|
||||
self.n_layers = n_layers
|
||||
self.half_channels = channels // 2
|
||||
self.mean_only = mean_only
|
||||
|
||||
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
||||
self.enc = WN(
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
p_dropout=p_dropout,
|
||||
gin_channels=gin_channels,
|
||||
)
|
||||
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
||||
self.post.weight.data.zero_()
|
||||
self.post.bias.data.zero_()
|
||||
|
||||
def forward(self, x, x_mask, g=None, reverse=False):
|
||||
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
||||
h = self.pre(x0) * x_mask
|
||||
h = self.enc(h, x_mask, g=g)
|
||||
stats = self.post(h) * x_mask
|
||||
if not self.mean_only:
|
||||
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
||||
else:
|
||||
m = stats
|
||||
logs = torch.zeros_like(m)
|
||||
|
||||
if not reverse:
|
||||
x1 = m + x1 * torch.exp(logs) * x_mask
|
||||
x = torch.cat([x0, x1], 1)
|
||||
logdet = torch.sum(logs, [1, 2])
|
||||
return x, logdet
|
||||
else:
|
||||
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
||||
x = torch.cat([x0, x1], 1)
|
||||
return x
|
||||
|
||||
|
||||
class ConvFlow(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
filter_channels,
|
||||
kernel_size,
|
||||
n_layers,
|
||||
num_bins=10,
|
||||
tail_bound=5.0,
|
||||
):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.n_layers = n_layers
|
||||
self.num_bins = num_bins
|
||||
self.tail_bound = tail_bound
|
||||
self.half_channels = in_channels // 2
|
||||
|
||||
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
||||
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
|
||||
self.proj = nn.Conv1d(
|
||||
filter_channels, self.half_channels * (num_bins * 3 - 1), 1
|
||||
)
|
||||
self.proj.weight.data.zero_()
|
||||
self.proj.bias.data.zero_()
|
||||
|
||||
def forward(self, x, x_mask, g=None, reverse=False):
|
||||
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
||||
h = self.pre(x0)
|
||||
h = self.convs(h, x_mask, g=g)
|
||||
h = self.proj(h) * x_mask
|
||||
|
||||
b, c, t = x0.shape
|
||||
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
|
||||
|
||||
unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
|
||||
unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(
|
||||
self.filter_channels
|
||||
)
|
||||
unnormalized_derivatives = h[..., 2 * self.num_bins :]
|
||||
|
||||
x1, logabsdet = piecewise_rational_quadratic_transform(
|
||||
x1,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=reverse,
|
||||
tails="linear",
|
||||
tail_bound=self.tail_bound,
|
||||
)
|
||||
|
||||
x = torch.cat([x0, x1], 1) * x_mask
|
||||
logdet = torch.sum(logabsdet * x_mask, [1, 2])
|
||||
if not reverse:
|
||||
return x, logdet
|
||||
else:
|
||||
return x
|
||||
|
||||
|
||||
class TransformerCouplingLayer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
n_layers,
|
||||
n_heads,
|
||||
p_dropout=0,
|
||||
filter_channels=0,
|
||||
mean_only=False,
|
||||
wn_sharing_parameter=None,
|
||||
gin_channels=0,
|
||||
):
|
||||
assert channels % 2 == 0, "channels should be divisible by 2"
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.n_layers = n_layers
|
||||
self.half_channels = channels // 2
|
||||
self.mean_only = mean_only
|
||||
|
||||
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
||||
self.enc = (
|
||||
Encoder(
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
isflow=True,
|
||||
gin_channels=gin_channels,
|
||||
)
|
||||
if wn_sharing_parameter is None
|
||||
else wn_sharing_parameter
|
||||
)
|
||||
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
||||
self.post.weight.data.zero_()
|
||||
self.post.bias.data.zero_()
|
||||
|
||||
def forward(self, x, x_mask, g=None, reverse=False):
|
||||
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
||||
h = self.pre(x0) * x_mask
|
||||
h = self.enc(h, x_mask, g=g)
|
||||
stats = self.post(h) * x_mask
|
||||
if not self.mean_only:
|
||||
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
||||
else:
|
||||
m = stats
|
||||
logs = torch.zeros_like(m)
|
||||
|
||||
if not reverse:
|
||||
x1 = m + x1 * torch.exp(logs) * x_mask
|
||||
x = torch.cat([x0, x1], 1)
|
||||
logdet = torch.sum(logs, [1, 2])
|
||||
return x, logdet
|
||||
else:
|
||||
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
||||
x = torch.cat([x0, x1], 1)
|
||||
return x
|
|
@ -0,0 +1,16 @@
|
|||
from numpy import zeros, int32, float32
|
||||
from torch import from_numpy
|
||||
|
||||
from .core import maximum_path_jit
|
||||
|
||||
|
||||
def maximum_path(neg_cent, mask):
|
||||
device = neg_cent.device
|
||||
dtype = neg_cent.dtype
|
||||
neg_cent = neg_cent.data.cpu().numpy().astype(float32)
|
||||
path = zeros(neg_cent.shape, dtype=int32)
|
||||
|
||||
t_t_max = mask.sum(1)[:, 0].data.cpu().numpy().astype(int32)
|
||||
t_s_max = mask.sum(2)[:, 0].data.cpu().numpy().astype(int32)
|
||||
maximum_path_jit(path, neg_cent, t_t_max, t_s_max)
|
||||
return from_numpy(path).to(device=device, dtype=dtype)
|
|
@ -0,0 +1,46 @@
|
|||
import numba
|
||||
|
||||
|
||||
@numba.jit(
|
||||
numba.void(
|
||||
numba.int32[:, :, ::1],
|
||||
numba.float32[:, :, ::1],
|
||||
numba.int32[::1],
|
||||
numba.int32[::1],
|
||||
),
|
||||
nopython=True,
|
||||
nogil=True,
|
||||
)
|
||||
def maximum_path_jit(paths, values, t_ys, t_xs):
|
||||
b = paths.shape[0]
|
||||
max_neg_val = -1e9
|
||||
for i in range(int(b)):
|
||||
path = paths[i]
|
||||
value = values[i]
|
||||
t_y = t_ys[i]
|
||||
t_x = t_xs[i]
|
||||
|
||||
v_prev = v_cur = 0.0
|
||||
index = t_x - 1
|
||||
|
||||
for y in range(t_y):
|
||||
for x in range(max(0, t_x + y - t_y), min(t_x, y + 1)):
|
||||
if x == y:
|
||||
v_cur = max_neg_val
|
||||
else:
|
||||
v_cur = value[y - 1, x]
|
||||
if x == 0:
|
||||
if y == 0:
|
||||
v_prev = 0.0
|
||||
else:
|
||||
v_prev = max_neg_val
|
||||
else:
|
||||
v_prev = value[y - 1, x - 1]
|
||||
value[y, x] += max(v_prev, v_cur)
|
||||
|
||||
for y in range(t_y - 1, -1, -1):
|
||||
path[y, index] = 1
|
||||
if index != 0 and (
|
||||
index == y or value[y - 1, index] < value[y - 1, index - 1]
|
||||
):
|
||||
index = index - 1
|
|
@ -0,0 +1,81 @@
|
|||
import re
|
||||
|
||||
|
||||
def extract_language_and_text_updated(speaker, dialogue):
|
||||
# 使用正则表达式匹配<语言>标签和其后的文本
|
||||
pattern_language_text = r"<(\S+?)>([^<]+)"
|
||||
matches = re.findall(pattern_language_text, dialogue, re.DOTALL)
|
||||
speaker = speaker[1:-1]
|
||||
# 清理文本:去除两边的空白字符
|
||||
matches_cleaned = [(lang.upper(), text.strip()) for lang, text in matches]
|
||||
matches_cleaned.append(speaker)
|
||||
return matches_cleaned
|
||||
|
||||
|
||||
def validate_text(input_text):
|
||||
# 验证说话人的正则表达式
|
||||
pattern_speaker = r"(\[\S+?\])((?:\s*<\S+?>[^<\[\]]+?)+)"
|
||||
|
||||
# 使用re.DOTALL标志使.匹配包括换行符在内的所有字符
|
||||
matches = re.findall(pattern_speaker, input_text, re.DOTALL)
|
||||
|
||||
# 对每个匹配到的说话人内容进行进一步验证
|
||||
for _, dialogue in matches:
|
||||
language_text_matches = extract_language_and_text_updated(_, dialogue)
|
||||
if not language_text_matches:
|
||||
return (
|
||||
False,
|
||||
"Error: Invalid format detected in dialogue content. Please check your input.",
|
||||
)
|
||||
|
||||
# 如果输入的文本中没有找到任何匹配项
|
||||
if not matches:
|
||||
return (
|
||||
False,
|
||||
"Error: No valid speaker format detected. Please check your input.",
|
||||
)
|
||||
|
||||
return True, "Input is valid."
|
||||
|
||||
|
||||
def text_matching(text: str) -> list:
|
||||
speaker_pattern = r"(\[\S+?\])(.+?)(?=\[\S+?\]|$)"
|
||||
matches = re.findall(speaker_pattern, text, re.DOTALL)
|
||||
result = []
|
||||
for speaker, dialogue in matches:
|
||||
result.append(extract_language_and_text_updated(speaker, dialogue))
|
||||
return result
|
||||
|
||||
|
||||
def cut_para(text):
|
||||
splitted_para = re.split("[\n]", text) # 按段分
|
||||
splitted_para = [
|
||||
sentence.strip() for sentence in splitted_para if sentence.strip()
|
||||
] # 删除空字符串
|
||||
return splitted_para
|
||||
|
||||
|
||||
def cut_sent(para):
|
||||
para = re.sub("([。!;?\?])([^”’])", r"\1\n\2", para) # 单字符断句符
|
||||
para = re.sub("(\.{6})([^”’])", r"\1\n\2", para) # 英文省略号
|
||||
para = re.sub("(\…{2})([^”’])", r"\1\n\2", para) # 中文省略号
|
||||
para = re.sub("([。!?\?][”’])([^,。!?\?])", r"\1\n\2", para)
|
||||
para = para.rstrip() # 段尾如果有多余的\n就去掉它
|
||||
return para.split("\n")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
text = """
|
||||
[说话人1]
|
||||
[说话人2]<zh>你好吗?<jp>元気ですか?<jp>こんにちは,世界。<zh>你好吗?
|
||||
[说话人3]<zh>谢谢。<jp>どういたしまして。
|
||||
"""
|
||||
text_matching(text)
|
||||
# 测试函数
|
||||
test_text = """
|
||||
[说话人1]<zh>你好,こんにちは!<jp>こんにちは,世界。
|
||||
[说话人2]<zh>你好吗?
|
||||
"""
|
||||
text_matching(test_text)
|
||||
res = validate_text(test_text)
|
||||
print(res)
|
|
@ -0,0 +1,63 @@
|
|||
from ..text.symbols import *
|
||||
|
||||
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
||||
|
||||
|
||||
def cleaned_text_to_sequence(cleaned_text, tones, language):
|
||||
"""Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
||||
Args:
|
||||
text: string to convert to a sequence
|
||||
Returns:
|
||||
List of integers corresponding to the symbols in the text
|
||||
"""
|
||||
phones = [_symbol_to_id[symbol] for symbol in cleaned_text]
|
||||
tone_start = language_tone_start_map[language]
|
||||
tones = [i + tone_start for i in tones]
|
||||
lang_id = language_id_map[language]
|
||||
lang_ids = [lang_id for i in phones]
|
||||
return phones, tones, lang_ids
|
||||
|
||||
|
||||
def get_bert(norm_text, word2ph, language, device, style_text=None, style_weight=0.7):
|
||||
from .chinese_bert import get_bert_feature as zh_bert
|
||||
from .english_bert_mock import get_bert_feature as en_bert
|
||||
from .japanese_bert import get_bert_feature as jp_bert
|
||||
|
||||
lang_bert_func_map = {"ZH": zh_bert, "EN": en_bert, "JP": jp_bert}
|
||||
bert = lang_bert_func_map[language](
|
||||
norm_text, word2ph, device, style_text, style_weight
|
||||
)
|
||||
return bert
|
||||
|
||||
|
||||
def check_bert_models():
|
||||
relative_path = r"./utils/bert_vits2/"
|
||||
import json
|
||||
from pathlib import Path
|
||||
|
||||
from ..config import config
|
||||
from .bert_utils import _check_bert
|
||||
|
||||
if config.mirror.lower() == "openi":
|
||||
import openi
|
||||
|
||||
kwargs = {"token": config.openi_token} if config.openi_token else {}
|
||||
openi.login(**kwargs)
|
||||
with open(relative_path+"bert/bert_models.json", "r") as fp:
|
||||
models = json.load(fp)
|
||||
for k, v in models.items():
|
||||
local_path = Path(relative_path+"bert").joinpath(k)
|
||||
_check_bert(v["repo_id"], v["files"], local_path)
|
||||
|
||||
|
||||
def init_openjtalk():
|
||||
import platform
|
||||
|
||||
if platform.platform() == "Linux":
|
||||
import pyopenjtalk
|
||||
|
||||
pyopenjtalk.g2p("こんにちは,世界。")
|
||||
|
||||
|
||||
init_openjtalk()
|
||||
check_bert_models()
|
|
@ -0,0 +1,23 @@
|
|||
from pathlib import Path
|
||||
|
||||
from huggingface_hub import hf_hub_download
|
||||
|
||||
from ..config import config
|
||||
|
||||
|
||||
MIRROR: str = config.mirror
|
||||
|
||||
|
||||
def _check_bert(repo_id, files, local_path):
|
||||
for file in files:
|
||||
if not Path(local_path).joinpath(file).exists():
|
||||
if MIRROR.lower() == "openi":
|
||||
import openi
|
||||
|
||||
openi.model.download_model(
|
||||
"Stardust_minus/Bert-VITS2", repo_id.split("/")[-1], "./bert"
|
||||
)
|
||||
else:
|
||||
hf_hub_download(
|
||||
repo_id, file, local_dir=local_path, local_dir_use_symlinks=False
|
||||
)
|
|
@ -0,0 +1,206 @@
|
|||
import os
|
||||
import re
|
||||
|
||||
from pypinyin import lazy_pinyin, Style
|
||||
|
||||
from ..text.symbols import punctuation
|
||||
from ..text.tone_sandhi import ToneSandhi
|
||||
|
||||
try:
|
||||
from tn.chinese.normalizer import Normalizer
|
||||
|
||||
normalizer = Normalizer().normalize
|
||||
except ImportError:
|
||||
import cn2an
|
||||
|
||||
print("tn.chinese.normalizer not found, use cn2an normalizer")
|
||||
normalizer = lambda x: cn2an.transform(x, "an2cn")
|
||||
|
||||
current_file_path = os.path.dirname(__file__)
|
||||
pinyin_to_symbol_map = {
|
||||
line.split("\t")[0]: line.strip().split("\t")[1]
|
||||
for line in open(os.path.join(current_file_path, "opencpop-strict.txt")).readlines()
|
||||
}
|
||||
|
||||
import jieba.posseg as psg
|
||||
|
||||
|
||||
rep_map = {
|
||||
":": ",",
|
||||
";": ",",
|
||||
",": ",",
|
||||
"。": ".",
|
||||
"!": "!",
|
||||
"?": "?",
|
||||
"\n": ".",
|
||||
"·": ",",
|
||||
"、": ",",
|
||||
"...": "…",
|
||||
"$": ".",
|
||||
"“": "'",
|
||||
"”": "'",
|
||||
'"': "'",
|
||||
"‘": "'",
|
||||
"’": "'",
|
||||
"(": "'",
|
||||
")": "'",
|
||||
"(": "'",
|
||||
")": "'",
|
||||
"《": "'",
|
||||
"》": "'",
|
||||
"【": "'",
|
||||
"】": "'",
|
||||
"[": "'",
|
||||
"]": "'",
|
||||
"—": "-",
|
||||
"~": "-",
|
||||
"~": "-",
|
||||
"「": "'",
|
||||
"」": "'",
|
||||
}
|
||||
|
||||
tone_modifier = ToneSandhi()
|
||||
|
||||
|
||||
def replace_punctuation(text):
|
||||
text = text.replace("嗯", "恩").replace("呣", "母")
|
||||
pattern = re.compile("|".join(re.escape(p) for p in rep_map.keys()))
|
||||
|
||||
replaced_text = pattern.sub(lambda x: rep_map[x.group()], text)
|
||||
|
||||
replaced_text = re.sub(
|
||||
r"[^\u4e00-\u9fa5" + "".join(punctuation) + r"]+", "", replaced_text
|
||||
)
|
||||
|
||||
return replaced_text
|
||||
|
||||
|
||||
def g2p(text):
|
||||
pattern = r"(?<=[{0}])\s*".format("".join(punctuation))
|
||||
sentences = [i for i in re.split(pattern, text) if i.strip() != ""]
|
||||
phones, tones, word2ph = _g2p(sentences)
|
||||
assert sum(word2ph) == len(phones)
|
||||
assert len(word2ph) == len(text) # Sometimes it will crash,you can add a try-catch.
|
||||
phones = ["_"] + phones + ["_"]
|
||||
tones = [0] + tones + [0]
|
||||
word2ph = [1] + word2ph + [1]
|
||||
return phones, tones, word2ph
|
||||
|
||||
|
||||
def _get_initials_finals(word):
|
||||
initials = []
|
||||
finals = []
|
||||
orig_initials = lazy_pinyin(word, neutral_tone_with_five=True, style=Style.INITIALS)
|
||||
orig_finals = lazy_pinyin(
|
||||
word, neutral_tone_with_five=True, style=Style.FINALS_TONE3
|
||||
)
|
||||
for c, v in zip(orig_initials, orig_finals):
|
||||
initials.append(c)
|
||||
finals.append(v)
|
||||
return initials, finals
|
||||
|
||||
|
||||
def _g2p(segments):
|
||||
phones_list = []
|
||||
tones_list = []
|
||||
word2ph = []
|
||||
for seg in segments:
|
||||
# Replace all English words in the sentence
|
||||
seg = re.sub("[a-zA-Z]+", "", seg)
|
||||
seg_cut = psg.lcut(seg)
|
||||
initials = []
|
||||
finals = []
|
||||
seg_cut = tone_modifier.pre_merge_for_modify(seg_cut)
|
||||
for word, pos in seg_cut:
|
||||
if pos == "eng":
|
||||
continue
|
||||
sub_initials, sub_finals = _get_initials_finals(word)
|
||||
sub_finals = tone_modifier.modified_tone(word, pos, sub_finals)
|
||||
initials.append(sub_initials)
|
||||
finals.append(sub_finals)
|
||||
|
||||
# assert len(sub_initials) == len(sub_finals) == len(word)
|
||||
initials = sum(initials, [])
|
||||
finals = sum(finals, [])
|
||||
#
|
||||
for c, v in zip(initials, finals):
|
||||
raw_pinyin = c + v
|
||||
# NOTE: post process for pypinyin outputs
|
||||
# we discriminate i, ii and iii
|
||||
if c == v:
|
||||
assert c in punctuation
|
||||
phone = [c]
|
||||
tone = "0"
|
||||
word2ph.append(1)
|
||||
else:
|
||||
v_without_tone = v[:-1]
|
||||
tone = v[-1]
|
||||
|
||||
pinyin = c + v_without_tone
|
||||
assert tone in "12345"
|
||||
|
||||
if c:
|
||||
# 多音节
|
||||
v_rep_map = {
|
||||
"uei": "ui",
|
||||
"iou": "iu",
|
||||
"uen": "un",
|
||||
}
|
||||
if v_without_tone in v_rep_map.keys():
|
||||
pinyin = c + v_rep_map[v_without_tone]
|
||||
else:
|
||||
# 单音节
|
||||
pinyin_rep_map = {
|
||||
"ing": "ying",
|
||||
"i": "yi",
|
||||
"in": "yin",
|
||||
"u": "wu",
|
||||
}
|
||||
if pinyin in pinyin_rep_map.keys():
|
||||
pinyin = pinyin_rep_map[pinyin]
|
||||
else:
|
||||
single_rep_map = {
|
||||
"v": "yu",
|
||||
"e": "e",
|
||||
"i": "y",
|
||||
"u": "w",
|
||||
}
|
||||
if pinyin[0] in single_rep_map.keys():
|
||||
pinyin = single_rep_map[pinyin[0]] + pinyin[1:]
|
||||
|
||||
assert pinyin in pinyin_to_symbol_map.keys(), (pinyin, seg, raw_pinyin)
|
||||
phone = pinyin_to_symbol_map[pinyin].split(" ")
|
||||
word2ph.append(len(phone))
|
||||
|
||||
phones_list += phone
|
||||
tones_list += [int(tone)] * len(phone)
|
||||
return phones_list, tones_list, word2ph
|
||||
|
||||
|
||||
def text_normalize(text):
|
||||
text = normalizer(text)
|
||||
text = replace_punctuation(text)
|
||||
return text
|
||||
|
||||
|
||||
def get_bert_feature(text, word2ph):
|
||||
from text import chinese_bert
|
||||
|
||||
return chinese_bert.get_bert_feature(text, word2ph)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from text.chinese_bert import get_bert_feature
|
||||
|
||||
text = "啊!但是《原神》是由,米哈\游自主, [研发]的一款全.新开放世界.冒险游戏"
|
||||
text = text_normalize(text)
|
||||
print(text)
|
||||
phones, tones, word2ph = g2p(text)
|
||||
bert = get_bert_feature(text, word2ph)
|
||||
|
||||
print(phones, tones, word2ph, bert.shape)
|
||||
|
||||
|
||||
# # 示例用法
|
||||
# text = "这是一个示例文本:,你好!这是一个测试...."
|
||||
# print(g2p_paddle(text)) # 输出: 这是一个示例文本你好这是一个测试
|
|
@ -0,0 +1,119 @@
|
|||
import sys
|
||||
|
||||
import torch
|
||||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||
|
||||
from ..config import config
|
||||
|
||||
LOCAL_PATH = "./utils/bert_vits2/bert/chinese-roberta-wwm-ext-large"
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(LOCAL_PATH)
|
||||
|
||||
models = dict()
|
||||
|
||||
|
||||
def get_bert_feature(
|
||||
text,
|
||||
word2ph,
|
||||
device=config.bert_gen_config.device,
|
||||
style_text=None,
|
||||
style_weight=0.7,
|
||||
):
|
||||
if (
|
||||
sys.platform == "darwin"
|
||||
and torch.backends.mps.is_available()
|
||||
and device == "cpu"
|
||||
):
|
||||
device = "mps"
|
||||
if not device:
|
||||
device = "cuda"
|
||||
if device not in models.keys():
|
||||
models[device] = AutoModelForMaskedLM.from_pretrained(LOCAL_PATH).to(device)
|
||||
with torch.no_grad():
|
||||
inputs = tokenizer(text, return_tensors="pt")
|
||||
for i in inputs:
|
||||
inputs[i] = inputs[i].to(device)
|
||||
res = models[device](**inputs, output_hidden_states=True)
|
||||
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()
|
||||
if style_text:
|
||||
style_inputs = tokenizer(style_text, return_tensors="pt")
|
||||
for i in style_inputs:
|
||||
style_inputs[i] = style_inputs[i].to(device)
|
||||
style_res = models[device](**style_inputs, output_hidden_states=True)
|
||||
style_res = torch.cat(style_res["hidden_states"][-3:-2], -1)[0].cpu()
|
||||
style_res_mean = style_res.mean(0)
|
||||
assert len(word2ph) == len(text) + 2
|
||||
word2phone = word2ph
|
||||
phone_level_feature = []
|
||||
for i in range(len(word2phone)):
|
||||
if style_text:
|
||||
repeat_feature = (
|
||||
res[i].repeat(word2phone[i], 1) * (1 - style_weight)
|
||||
+ style_res_mean.repeat(word2phone[i], 1) * style_weight
|
||||
)
|
||||
else:
|
||||
repeat_feature = res[i].repeat(word2phone[i], 1)
|
||||
phone_level_feature.append(repeat_feature)
|
||||
|
||||
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
||||
|
||||
return phone_level_feature.T
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
word_level_feature = torch.rand(38, 1024) # 12个词,每个词1024维特征
|
||||
word2phone = [
|
||||
1,
|
||||
2,
|
||||
1,
|
||||
2,
|
||||
2,
|
||||
1,
|
||||
2,
|
||||
2,
|
||||
1,
|
||||
2,
|
||||
2,
|
||||
1,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
1,
|
||||
1,
|
||||
2,
|
||||
2,
|
||||
1,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
1,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
1,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
1,
|
||||
]
|
||||
|
||||
# 计算总帧数
|
||||
total_frames = sum(word2phone)
|
||||
print(word_level_feature.shape)
|
||||
print(word2phone)
|
||||
phone_level_feature = []
|
||||
for i in range(len(word2phone)):
|
||||
print(word_level_feature[i].shape)
|
||||
|
||||
# 对每个词重复word2phone[i]次
|
||||
repeat_feature = word_level_feature[i].repeat(word2phone[i], 1)
|
||||
phone_level_feature.append(repeat_feature)
|
||||
|
||||
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
||||
print(phone_level_feature.shape) # torch.Size([36, 1024])
|
|
@ -0,0 +1,29 @@
|
|||
from ..text import chinese, japanese, english, cleaned_text_to_sequence
|
||||
# from text import chinese, cleaned_text_to_sequence
|
||||
|
||||
language_module_map = {"ZH": chinese, "JP": japanese, "EN": english}
|
||||
# language_module_map = {"ZH": chinese}
|
||||
|
||||
|
||||
def clean_text(text, language):
|
||||
language_module = language_module_map[language]
|
||||
norm_text = language_module.text_normalize(text)
|
||||
phones, tones, word2ph = language_module.g2p(norm_text)
|
||||
return norm_text, phones, tones, word2ph
|
||||
|
||||
|
||||
def clean_text_bert(text, language):
|
||||
language_module = language_module_map[language]
|
||||
norm_text = language_module.text_normalize(text)
|
||||
phones, tones, word2ph = language_module.g2p(norm_text)
|
||||
bert = language_module.get_bert_feature(norm_text, word2ph)
|
||||
return phones, tones, bert
|
||||
|
||||
|
||||
def text_to_sequence(text, language):
|
||||
norm_text, phones, tones, word2ph = clean_text(text, language)
|
||||
return cleaned_text_to_sequence(phones, tones, language)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
pass
|
File diff suppressed because it is too large
Load Diff
Binary file not shown.
|
@ -0,0 +1,494 @@
|
|||
import pickle
|
||||
import os
|
||||
import re
|
||||
from g2p_en import G2p
|
||||
from transformers import DebertaV2Tokenizer
|
||||
|
||||
from ..text import symbols
|
||||
from ..text.symbols import punctuation
|
||||
|
||||
current_file_path = os.path.dirname(__file__)
|
||||
CMU_DICT_PATH = os.path.join(current_file_path, "cmudict.rep")
|
||||
CACHE_PATH = os.path.join(current_file_path, "cmudict_cache.pickle")
|
||||
_g2p = G2p()
|
||||
LOCAL_PATH = "./utils/bert_vits2/bert/deberta-v3-large"
|
||||
tokenizer = DebertaV2Tokenizer.from_pretrained(LOCAL_PATH)
|
||||
|
||||
arpa = {
|
||||
"AH0",
|
||||
"S",
|
||||
"AH1",
|
||||
"EY2",
|
||||
"AE2",
|
||||
"EH0",
|
||||
"OW2",
|
||||
"UH0",
|
||||
"NG",
|
||||
"B",
|
||||
"G",
|
||||
"AY0",
|
||||
"M",
|
||||
"AA0",
|
||||
"F",
|
||||
"AO0",
|
||||
"ER2",
|
||||
"UH1",
|
||||
"IY1",
|
||||
"AH2",
|
||||
"DH",
|
||||
"IY0",
|
||||
"EY1",
|
||||
"IH0",
|
||||
"K",
|
||||
"N",
|
||||
"W",
|
||||
"IY2",
|
||||
"T",
|
||||
"AA1",
|
||||
"ER1",
|
||||
"EH2",
|
||||
"OY0",
|
||||
"UH2",
|
||||
"UW1",
|
||||
"Z",
|
||||
"AW2",
|
||||
"AW1",
|
||||
"V",
|
||||
"UW2",
|
||||
"AA2",
|
||||
"ER",
|
||||
"AW0",
|
||||
"UW0",
|
||||
"R",
|
||||
"OW1",
|
||||
"EH1",
|
||||
"ZH",
|
||||
"AE0",
|
||||
"IH2",
|
||||
"IH",
|
||||
"Y",
|
||||
"JH",
|
||||
"P",
|
||||
"AY1",
|
||||
"EY0",
|
||||
"OY2",
|
||||
"TH",
|
||||
"HH",
|
||||
"D",
|
||||
"ER0",
|
||||
"CH",
|
||||
"AO1",
|
||||
"AE1",
|
||||
"AO2",
|
||||
"OY1",
|
||||
"AY2",
|
||||
"IH1",
|
||||
"OW0",
|
||||
"L",
|
||||
"SH",
|
||||
}
|
||||
|
||||
|
||||
def post_replace_ph(ph):
|
||||
rep_map = {
|
||||
":": ",",
|
||||
";": ",",
|
||||
",": ",",
|
||||
"。": ".",
|
||||
"!": "!",
|
||||
"?": "?",
|
||||
"\n": ".",
|
||||
"·": ",",
|
||||
"、": ",",
|
||||
"…": "...",
|
||||
"···": "...",
|
||||
"・・・": "...",
|
||||
"v": "V",
|
||||
}
|
||||
if ph in rep_map.keys():
|
||||
ph = rep_map[ph]
|
||||
if ph in symbols:
|
||||
return ph
|
||||
if ph not in symbols:
|
||||
ph = "UNK"
|
||||
return ph
|
||||
|
||||
|
||||
rep_map = {
|
||||
":": ",",
|
||||
";": ",",
|
||||
",": ",",
|
||||
"。": ".",
|
||||
"!": "!",
|
||||
"?": "?",
|
||||
"\n": ".",
|
||||
".": ".",
|
||||
"…": "...",
|
||||
"···": "...",
|
||||
"・・・": "...",
|
||||
"·": ",",
|
||||
"・": ",",
|
||||
"、": ",",
|
||||
"$": ".",
|
||||
"“": "'",
|
||||
"”": "'",
|
||||
'"': "'",
|
||||
"‘": "'",
|
||||
"’": "'",
|
||||
"(": "'",
|
||||
")": "'",
|
||||
"(": "'",
|
||||
")": "'",
|
||||
"《": "'",
|
||||
"》": "'",
|
||||
"【": "'",
|
||||
"】": "'",
|
||||
"[": "'",
|
||||
"]": "'",
|
||||
"—": "-",
|
||||
"−": "-",
|
||||
"~": "-",
|
||||
"~": "-",
|
||||
"「": "'",
|
||||
"」": "'",
|
||||
}
|
||||
|
||||
|
||||
def replace_punctuation(text):
|
||||
pattern = re.compile("|".join(re.escape(p) for p in rep_map.keys()))
|
||||
|
||||
replaced_text = pattern.sub(lambda x: rep_map[x.group()], text)
|
||||
|
||||
# replaced_text = re.sub(
|
||||
# r"[^\u3040-\u309F\u30A0-\u30FF\u4E00-\u9FFF\u3400-\u4DBF\u3005"
|
||||
# + "".join(punctuation)
|
||||
# + r"]+",
|
||||
# "",
|
||||
# replaced_text,
|
||||
# )
|
||||
|
||||
return replaced_text
|
||||
|
||||
|
||||
def read_dict():
|
||||
g2p_dict = {}
|
||||
start_line = 49
|
||||
with open(CMU_DICT_PATH) as f:
|
||||
line = f.readline()
|
||||
line_index = 1
|
||||
while line:
|
||||
if line_index >= start_line:
|
||||
line = line.strip()
|
||||
word_split = line.split(" ")
|
||||
word = word_split[0]
|
||||
|
||||
syllable_split = word_split[1].split(" - ")
|
||||
g2p_dict[word] = []
|
||||
for syllable in syllable_split:
|
||||
phone_split = syllable.split(" ")
|
||||
g2p_dict[word].append(phone_split)
|
||||
|
||||
line_index = line_index + 1
|
||||
line = f.readline()
|
||||
|
||||
return g2p_dict
|
||||
|
||||
|
||||
def cache_dict(g2p_dict, file_path):
|
||||
with open(file_path, "wb") as pickle_file:
|
||||
pickle.dump(g2p_dict, pickle_file)
|
||||
|
||||
|
||||
def get_dict():
|
||||
if os.path.exists(CACHE_PATH):
|
||||
with open(CACHE_PATH, "rb") as pickle_file:
|
||||
g2p_dict = pickle.load(pickle_file)
|
||||
else:
|
||||
g2p_dict = read_dict()
|
||||
cache_dict(g2p_dict, CACHE_PATH)
|
||||
|
||||
return g2p_dict
|
||||
|
||||
|
||||
eng_dict = get_dict()
|
||||
|
||||
|
||||
def refine_ph(phn):
|
||||
tone = 0
|
||||
if re.search(r"\d$", phn):
|
||||
tone = int(phn[-1]) + 1
|
||||
phn = phn[:-1]
|
||||
else:
|
||||
tone = 3
|
||||
return phn.lower(), tone
|
||||
|
||||
|
||||
def refine_syllables(syllables):
|
||||
tones = []
|
||||
phonemes = []
|
||||
for phn_list in syllables:
|
||||
for i in range(len(phn_list)):
|
||||
phn = phn_list[i]
|
||||
phn, tone = refine_ph(phn)
|
||||
phonemes.append(phn)
|
||||
tones.append(tone)
|
||||
return phonemes, tones
|
||||
|
||||
|
||||
import inflect
|
||||
|
||||
_inflect = inflect.engine()
|
||||
_comma_number_re = re.compile(r"([0-9][0-9\,]+[0-9])")
|
||||
_decimal_number_re = re.compile(r"([0-9]+\.[0-9]+)")
|
||||
_pounds_re = re.compile(r"£([0-9\,]*[0-9]+)")
|
||||
_dollars_re = re.compile(r"\$([0-9\.\,]*[0-9]+)")
|
||||
_ordinal_re = re.compile(r"[0-9]+(st|nd|rd|th)")
|
||||
_number_re = re.compile(r"[0-9]+")
|
||||
|
||||
# List of (regular expression, replacement) pairs for abbreviations:
|
||||
_abbreviations = [
|
||||
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
||||
for x in [
|
||||
("mrs", "misess"),
|
||||
("mr", "mister"),
|
||||
("dr", "doctor"),
|
||||
("st", "saint"),
|
||||
("co", "company"),
|
||||
("jr", "junior"),
|
||||
("maj", "major"),
|
||||
("gen", "general"),
|
||||
("drs", "doctors"),
|
||||
("rev", "reverend"),
|
||||
("lt", "lieutenant"),
|
||||
("hon", "honorable"),
|
||||
("sgt", "sergeant"),
|
||||
("capt", "captain"),
|
||||
("esq", "esquire"),
|
||||
("ltd", "limited"),
|
||||
("col", "colonel"),
|
||||
("ft", "fort"),
|
||||
]
|
||||
]
|
||||
|
||||
|
||||
# List of (ipa, lazy ipa) pairs:
|
||||
_lazy_ipa = [
|
||||
(re.compile("%s" % x[0]), x[1])
|
||||
for x in [
|
||||
("r", "ɹ"),
|
||||
("æ", "e"),
|
||||
("ɑ", "a"),
|
||||
("ɔ", "o"),
|
||||
("ð", "z"),
|
||||
("θ", "s"),
|
||||
("ɛ", "e"),
|
||||
("ɪ", "i"),
|
||||
("ʊ", "u"),
|
||||
("ʒ", "ʥ"),
|
||||
("ʤ", "ʥ"),
|
||||
("ˈ", "↓"),
|
||||
]
|
||||
]
|
||||
|
||||
# List of (ipa, lazy ipa2) pairs:
|
||||
_lazy_ipa2 = [
|
||||
(re.compile("%s" % x[0]), x[1])
|
||||
for x in [
|
||||
("r", "ɹ"),
|
||||
("ð", "z"),
|
||||
("θ", "s"),
|
||||
("ʒ", "ʑ"),
|
||||
("ʤ", "dʑ"),
|
||||
("ˈ", "↓"),
|
||||
]
|
||||
]
|
||||
|
||||
# List of (ipa, ipa2) pairs
|
||||
_ipa_to_ipa2 = [
|
||||
(re.compile("%s" % x[0]), x[1]) for x in [("r", "ɹ"), ("ʤ", "dʒ"), ("ʧ", "tʃ")]
|
||||
]
|
||||
|
||||
|
||||
def _expand_dollars(m):
|
||||
match = m.group(1)
|
||||
parts = match.split(".")
|
||||
if len(parts) > 2:
|
||||
return match + " dollars" # Unexpected format
|
||||
dollars = int(parts[0]) if parts[0] else 0
|
||||
cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0
|
||||
if dollars and cents:
|
||||
dollar_unit = "dollar" if dollars == 1 else "dollars"
|
||||
cent_unit = "cent" if cents == 1 else "cents"
|
||||
return "%s %s, %s %s" % (dollars, dollar_unit, cents, cent_unit)
|
||||
elif dollars:
|
||||
dollar_unit = "dollar" if dollars == 1 else "dollars"
|
||||
return "%s %s" % (dollars, dollar_unit)
|
||||
elif cents:
|
||||
cent_unit = "cent" if cents == 1 else "cents"
|
||||
return "%s %s" % (cents, cent_unit)
|
||||
else:
|
||||
return "zero dollars"
|
||||
|
||||
|
||||
def _remove_commas(m):
|
||||
return m.group(1).replace(",", "")
|
||||
|
||||
|
||||
def _expand_ordinal(m):
|
||||
return _inflect.number_to_words(m.group(0))
|
||||
|
||||
|
||||
def _expand_number(m):
|
||||
num = int(m.group(0))
|
||||
if num > 1000 and num < 3000:
|
||||
if num == 2000:
|
||||
return "two thousand"
|
||||
elif num > 2000 and num < 2010:
|
||||
return "two thousand " + _inflect.number_to_words(num % 100)
|
||||
elif num % 100 == 0:
|
||||
return _inflect.number_to_words(num // 100) + " hundred"
|
||||
else:
|
||||
return _inflect.number_to_words(
|
||||
num, andword="", zero="oh", group=2
|
||||
).replace(", ", " ")
|
||||
else:
|
||||
return _inflect.number_to_words(num, andword="")
|
||||
|
||||
|
||||
def _expand_decimal_point(m):
|
||||
return m.group(1).replace(".", " point ")
|
||||
|
||||
|
||||
def normalize_numbers(text):
|
||||
text = re.sub(_comma_number_re, _remove_commas, text)
|
||||
text = re.sub(_pounds_re, r"\1 pounds", text)
|
||||
text = re.sub(_dollars_re, _expand_dollars, text)
|
||||
text = re.sub(_decimal_number_re, _expand_decimal_point, text)
|
||||
text = re.sub(_ordinal_re, _expand_ordinal, text)
|
||||
text = re.sub(_number_re, _expand_number, text)
|
||||
return text
|
||||
|
||||
|
||||
def text_normalize(text):
|
||||
text = normalize_numbers(text)
|
||||
text = replace_punctuation(text)
|
||||
text = re.sub(r"([,;.\?\!])([\w])", r"\1 \2", text)
|
||||
return text
|
||||
|
||||
|
||||
def distribute_phone(n_phone, n_word):
|
||||
phones_per_word = [0] * n_word
|
||||
for task in range(n_phone):
|
||||
min_tasks = min(phones_per_word)
|
||||
min_index = phones_per_word.index(min_tasks)
|
||||
phones_per_word[min_index] += 1
|
||||
return phones_per_word
|
||||
|
||||
|
||||
def sep_text(text):
|
||||
words = re.split(r"([,;.\?\!\s+])", text)
|
||||
words = [word for word in words if word.strip() != ""]
|
||||
return words
|
||||
|
||||
|
||||
def text_to_words(text):
|
||||
tokens = tokenizer.tokenize(text)
|
||||
words = []
|
||||
for idx, t in enumerate(tokens):
|
||||
if t.startswith("▁"):
|
||||
words.append([t[1:]])
|
||||
else:
|
||||
if t in punctuation:
|
||||
if idx == len(tokens) - 1:
|
||||
words.append([f"{t}"])
|
||||
else:
|
||||
if (
|
||||
not tokens[idx + 1].startswith("▁")
|
||||
and tokens[idx + 1] not in punctuation
|
||||
):
|
||||
if idx == 0:
|
||||
words.append([])
|
||||
words[-1].append(f"{t}")
|
||||
else:
|
||||
words.append([f"{t}"])
|
||||
else:
|
||||
if idx == 0:
|
||||
words.append([])
|
||||
words[-1].append(f"{t}")
|
||||
return words
|
||||
|
||||
|
||||
def g2p(text):
|
||||
phones = []
|
||||
tones = []
|
||||
phone_len = []
|
||||
# words = sep_text(text)
|
||||
# tokens = [tokenizer.tokenize(i) for i in words]
|
||||
words = text_to_words(text)
|
||||
|
||||
for word in words:
|
||||
temp_phones, temp_tones = [], []
|
||||
if len(word) > 1:
|
||||
if "'" in word:
|
||||
word = ["".join(word)]
|
||||
for w in word:
|
||||
if w in punctuation:
|
||||
temp_phones.append(w)
|
||||
temp_tones.append(0)
|
||||
continue
|
||||
if w.upper() in eng_dict:
|
||||
phns, tns = refine_syllables(eng_dict[w.upper()])
|
||||
temp_phones += [post_replace_ph(i) for i in phns]
|
||||
temp_tones += tns
|
||||
# w2ph.append(len(phns))
|
||||
else:
|
||||
phone_list = list(filter(lambda p: p != " ", _g2p(w)))
|
||||
phns = []
|
||||
tns = []
|
||||
for ph in phone_list:
|
||||
if ph in arpa:
|
||||
ph, tn = refine_ph(ph)
|
||||
phns.append(ph)
|
||||
tns.append(tn)
|
||||
else:
|
||||
phns.append(ph)
|
||||
tns.append(0)
|
||||
temp_phones += [post_replace_ph(i) for i in phns]
|
||||
temp_tones += tns
|
||||
phones += temp_phones
|
||||
tones += temp_tones
|
||||
phone_len.append(len(temp_phones))
|
||||
# phones = [post_replace_ph(i) for i in phones]
|
||||
|
||||
word2ph = []
|
||||
for token, pl in zip(words, phone_len):
|
||||
word_len = len(token)
|
||||
|
||||
aaa = distribute_phone(pl, word_len)
|
||||
word2ph += aaa
|
||||
|
||||
phones = ["_"] + phones + ["_"]
|
||||
tones = [0] + tones + [0]
|
||||
word2ph = [1] + word2ph + [1]
|
||||
assert len(phones) == len(tones), text
|
||||
assert len(phones) == sum(word2ph), text
|
||||
|
||||
return phones, tones, word2ph
|
||||
|
||||
|
||||
def get_bert_feature(text, word2ph):
|
||||
from text import english_bert_mock
|
||||
|
||||
return english_bert_mock.get_bert_feature(text, word2ph)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# print(get_dict())
|
||||
# print(eng_word_to_phoneme("hello"))
|
||||
print(g2p("In this paper, we propose 1 DSPGAN, a GAN-based universal vocoder."))
|
||||
# all_phones = set()
|
||||
# for k, syllables in eng_dict.items():
|
||||
# for group in syllables:
|
||||
# for ph in group:
|
||||
# all_phones.add(ph)
|
||||
# print(all_phones)
|
|
@ -0,0 +1,61 @@
|
|||
import sys
|
||||
|
||||
import torch
|
||||
from transformers import DebertaV2Model, DebertaV2Tokenizer
|
||||
|
||||
from ..config import config
|
||||
|
||||
|
||||
LOCAL_PATH = "./utils/bert_vits2/bert/deberta-v3-large"
|
||||
|
||||
tokenizer = DebertaV2Tokenizer.from_pretrained(LOCAL_PATH)
|
||||
|
||||
models = dict()
|
||||
|
||||
|
||||
def get_bert_feature(
|
||||
text,
|
||||
word2ph,
|
||||
device=config.bert_gen_config.device,
|
||||
style_text=None,
|
||||
style_weight=0.7,
|
||||
):
|
||||
if (
|
||||
sys.platform == "darwin"
|
||||
and torch.backends.mps.is_available()
|
||||
and device == "cpu"
|
||||
):
|
||||
device = "mps"
|
||||
if not device:
|
||||
device = "cuda"
|
||||
if device not in models.keys():
|
||||
models[device] = DebertaV2Model.from_pretrained(LOCAL_PATH).to(device)
|
||||
with torch.no_grad():
|
||||
inputs = tokenizer(text, return_tensors="pt")
|
||||
for i in inputs:
|
||||
inputs[i] = inputs[i].to(device)
|
||||
res = models[device](**inputs, output_hidden_states=True)
|
||||
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()
|
||||
if style_text:
|
||||
style_inputs = tokenizer(style_text, return_tensors="pt")
|
||||
for i in style_inputs:
|
||||
style_inputs[i] = style_inputs[i].to(device)
|
||||
style_res = models[device](**style_inputs, output_hidden_states=True)
|
||||
style_res = torch.cat(style_res["hidden_states"][-3:-2], -1)[0].cpu()
|
||||
style_res_mean = style_res.mean(0)
|
||||
assert len(word2ph) == res.shape[0], (text, res.shape[0], len(word2ph))
|
||||
word2phone = word2ph
|
||||
phone_level_feature = []
|
||||
for i in range(len(word2phone)):
|
||||
if style_text:
|
||||
repeat_feature = (
|
||||
res[i].repeat(word2phone[i], 1) * (1 - style_weight)
|
||||
+ style_res_mean.repeat(word2phone[i], 1) * style_weight
|
||||
)
|
||||
else:
|
||||
repeat_feature = res[i].repeat(word2phone[i], 1)
|
||||
phone_level_feature.append(repeat_feature)
|
||||
|
||||
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
||||
|
||||
return phone_level_feature.T
|
|
@ -0,0 +1,720 @@
|
|||
# Convert Japanese text to phonemes which is
|
||||
# compatible with Julius https://github.com/julius-speech/segmentation-kit
|
||||
import re
|
||||
import unicodedata
|
||||
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
from ..text import punctuation, symbols
|
||||
|
||||
from num2words import num2words
|
||||
|
||||
import pyopenjtalk
|
||||
import jaconv
|
||||
|
||||
|
||||
# Mapping of hiragana to phonetic representation
|
||||
hiragana_map = {
|
||||
"う゛ぁ": " v a",
|
||||
"う゛ぃ": " v i",
|
||||
"う゛ぇ": " v e",
|
||||
"う゛ぉ": " v o",
|
||||
"う゛ゅ": " by u",
|
||||
"ぅ゛": " v u",
|
||||
# ゔ等の処理を追加
|
||||
"ゔぁ": " v a",
|
||||
"ゔぃ": " v i",
|
||||
"ゔぇ": " v e",
|
||||
"ゔぉ": " v o",
|
||||
"ゔゅ": " by u",
|
||||
# 2文字からなる変換規則
|
||||
"あぁ": " a a",
|
||||
"いぃ": " i i",
|
||||
"いぇ": " i e",
|
||||
"いゃ": " y a",
|
||||
"うぅ": " u:",
|
||||
"えぇ": " e e",
|
||||
"おぉ": " o:",
|
||||
"かぁ": " k a:",
|
||||
"きぃ": " k i:",
|
||||
"くぅ": " k u:",
|
||||
"くゃ": " ky a",
|
||||
"くゅ": " ky u",
|
||||
"くょ": " ky o",
|
||||
"けぇ": " k e:",
|
||||
"こぉ": " k o:",
|
||||
"がぁ": " g a:",
|
||||
"ぎぃ": " g i:",
|
||||
"ぐぅ": " g u:",
|
||||
"ぐゃ": " gy a",
|
||||
"ぐゅ": " gy u",
|
||||
"ぐょ": " gy o",
|
||||
"げぇ": " g e:",
|
||||
"ごぉ": " g o:",
|
||||
"さぁ": " s a:",
|
||||
"しぃ": " sh i",
|
||||
"すぅ": " s u:",
|
||||
"すゃ": " sh a",
|
||||
"すゅ": " sh u",
|
||||
"すょ": " sh o",
|
||||
"せぇ": " s e:",
|
||||
"そぉ": " s o:",
|
||||
"ざぁ": " z a:",
|
||||
"じぃ": " j i:",
|
||||
"ずぅ": " z u:",
|
||||
"ずゃ": " zy a",
|
||||
"ずゅ": " zy u",
|
||||
"ずょ": " zy o",
|
||||
"ぜぇ": " z e:",
|
||||
"ぞぉ": " z o:",
|
||||
"たぁ": " t a:",
|
||||
"ちぃ": " ch i",
|
||||
"つぁ": " ts a",
|
||||
"つぃ": " ts i",
|
||||
"つぅ": " ts u",
|
||||
"つゃ": " ch a",
|
||||
"つゅ": " ch u",
|
||||
"つょ": " ch o",
|
||||
"つぇ": " ts e",
|
||||
"つぉ": " ts o",
|
||||
"てぇ": " t e:",
|
||||
"とぉ": " t o:",
|
||||
"だぁ": " d a:",
|
||||
"ぢぃ": " j i:",
|
||||
"づぅ": " d u:",
|
||||
"づゃ": " zy a",
|
||||
"づゅ": " zy u",
|
||||
"づょ": " zy o",
|
||||
"でぇ": " d e:",
|
||||
"なぁ": " n a:",
|
||||
"にぃ": " n i:",
|
||||
"ぬぅ": " n u:",
|
||||
"ぬゃ": " ny a",
|
||||
"ぬゅ": " ny u",
|
||||
"ぬょ": " ny o",
|
||||
"ねぇ": " n e:",
|
||||
"のぉ": " n o:",
|
||||
"はぁ": " h a:",
|
||||
"ひぃ": " h i:",
|
||||
"ふぅ": " f u:",
|
||||
"ふゃ": " hy a",
|
||||
"へぇ": " h e:",
|
||||
"ほぉ": " h o:",
|
||||
"ばぁ": " b a:",
|
||||
"びぃ": " b i:",
|
||||
"ぶぅ": " b u:",
|
||||
"ぶゅ": " by u",
|
||||
"べぇ": " b e:",
|
||||
"ぼぉ": " b o:",
|
||||
"ぱぁ": " p a:",
|
||||
"ぴぃ": " p i:",
|
||||
"ぷぅ": " p u:",
|
||||
"ぷゃ": " py a",
|
||||
"ぷゅ": " py u",
|
||||
"ぷょ": " py o",
|
||||
"ぺぇ": " p e:",
|
||||
"ぽぉ": " p o:",
|
||||
"まぁ": " m a:",
|
||||
"みぃ": " m i:",
|
||||
"むぅ": " m u:",
|
||||
"むゃ": " my a",
|
||||
"むゅ": " my u",
|
||||
"むょ": " my o",
|
||||
"めぇ": " m e:",
|
||||
"もぉ": " m o:",
|
||||
"やぁ": " y a:",
|
||||
"ゆぅ": " y u:",
|
||||
"ゆゃ": " y a:",
|
||||
"ゆゅ": " y u:",
|
||||
"ゆょ": " y o:",
|
||||
"よぉ": " y o:",
|
||||
"らぁ": " r a:",
|
||||
"りぃ": " r i:",
|
||||
"るぅ": " r u:",
|
||||
"るゃ": " ry a",
|
||||
"るゅ": " ry u",
|
||||
"るょ": " ry o",
|
||||
"れぇ": " r e:",
|
||||
"ろぉ": " r o:",
|
||||
"わぁ": " w a:",
|
||||
"をぉ": " o:",
|
||||
"う゛": " b u",
|
||||
"でぃ": " d i",
|
||||
"でゃ": " dy a",
|
||||
"でゅ": " dy u",
|
||||
"でょ": " dy o",
|
||||
"てぃ": " t i",
|
||||
"てゃ": " ty a",
|
||||
"てゅ": " ty u",
|
||||
"てょ": " ty o",
|
||||
"すぃ": " s i",
|
||||
"ずぁ": " z u",
|
||||
"ずぃ": " z i",
|
||||
"ずぇ": " z e",
|
||||
"ずぉ": " z o",
|
||||
"きゃ": " ky a",
|
||||
"きゅ": " ky u",
|
||||
"きょ": " ky o",
|
||||
"しゃ": " sh a",
|
||||
"しゅ": " sh u",
|
||||
"しぇ": " sh e",
|
||||
"しょ": " sh o",
|
||||
"ちゃ": " ch a",
|
||||
"ちゅ": " ch u",
|
||||
"ちぇ": " ch e",
|
||||
"ちょ": " ch o",
|
||||
"とぅ": " t u",
|
||||
"とゃ": " ty a",
|
||||
"とゅ": " ty u",
|
||||
"とょ": " ty o",
|
||||
"どぁ": " d o ",
|
||||
"どぅ": " d u",
|
||||
"どゃ": " dy a",
|
||||
"どゅ": " dy u",
|
||||
"どょ": " dy o",
|
||||
"どぉ": " d o:",
|
||||
"にゃ": " ny a",
|
||||
"にゅ": " ny u",
|
||||
"にょ": " ny o",
|
||||
"ひゃ": " hy a",
|
||||
"ひゅ": " hy u",
|
||||
"ひょ": " hy o",
|
||||
"みゃ": " my a",
|
||||
"みゅ": " my u",
|
||||
"みょ": " my o",
|
||||
"りゃ": " ry a",
|
||||
"りゅ": " ry u",
|
||||
"りょ": " ry o",
|
||||
"ぎゃ": " gy a",
|
||||
"ぎゅ": " gy u",
|
||||
"ぎょ": " gy o",
|
||||
"ぢぇ": " j e",
|
||||
"ぢゃ": " j a",
|
||||
"ぢゅ": " j u",
|
||||
"ぢょ": " j o",
|
||||
"じぇ": " j e",
|
||||
"じゃ": " j a",
|
||||
"じゅ": " j u",
|
||||
"じょ": " j o",
|
||||
"びゃ": " by a",
|
||||
"びゅ": " by u",
|
||||
"びょ": " by o",
|
||||
"ぴゃ": " py a",
|
||||
"ぴゅ": " py u",
|
||||
"ぴょ": " py o",
|
||||
"うぁ": " u a",
|
||||
"うぃ": " w i",
|
||||
"うぇ": " w e",
|
||||
"うぉ": " w o",
|
||||
"ふぁ": " f a",
|
||||
"ふぃ": " f i",
|
||||
"ふゅ": " hy u",
|
||||
"ふょ": " hy o",
|
||||
"ふぇ": " f e",
|
||||
"ふぉ": " f o",
|
||||
# 1音からなる変換規則
|
||||
"あ": " a",
|
||||
"い": " i",
|
||||
"う": " u",
|
||||
"ゔ": " v u", # ゔの処理を追加
|
||||
"え": " e",
|
||||
"お": " o",
|
||||
"か": " k a",
|
||||
"き": " k i",
|
||||
"く": " k u",
|
||||
"け": " k e",
|
||||
"こ": " k o",
|
||||
"さ": " s a",
|
||||
"し": " sh i",
|
||||
"す": " s u",
|
||||
"せ": " s e",
|
||||
"そ": " s o",
|
||||
"た": " t a",
|
||||
"ち": " ch i",
|
||||
"つ": " ts u",
|
||||
"て": " t e",
|
||||
"と": " t o",
|
||||
"な": " n a",
|
||||
"に": " n i",
|
||||
"ぬ": " n u",
|
||||
"ね": " n e",
|
||||
"の": " n o",
|
||||
"は": " h a",
|
||||
"ひ": " h i",
|
||||
"ふ": " f u",
|
||||
"へ": " h e",
|
||||
"ほ": " h o",
|
||||
"ま": " m a",
|
||||
"み": " m i",
|
||||
"む": " m u",
|
||||
"め": " m e",
|
||||
"も": " m o",
|
||||
"ら": " r a",
|
||||
"り": " r i",
|
||||
"る": " r u",
|
||||
"れ": " r e",
|
||||
"ろ": " r o",
|
||||
"が": " g a",
|
||||
"ぎ": " g i",
|
||||
"ぐ": " g u",
|
||||
"げ": " g e",
|
||||
"ご": " g o",
|
||||
"ざ": " z a",
|
||||
"じ": " j i",
|
||||
"ず": " z u",
|
||||
"ぜ": " z e",
|
||||
"ぞ": " z o",
|
||||
"だ": " d a",
|
||||
"ぢ": " j i",
|
||||
"づ": " z u",
|
||||
"で": " d e",
|
||||
"ど": " d o",
|
||||
"ば": " b a",
|
||||
"び": " b i",
|
||||
"ぶ": " b u",
|
||||
"べ": " b e",
|
||||
"ぼ": " b o",
|
||||
"ぱ": " p a",
|
||||
"ぴ": " p i",
|
||||
"ぷ": " p u",
|
||||
"ぺ": " p e",
|
||||
"ぽ": " p o",
|
||||
"や": " y a",
|
||||
"ゆ": " y u",
|
||||
"よ": " y o",
|
||||
"わ": " w a",
|
||||
"ゐ": " i",
|
||||
"ゑ": " e",
|
||||
"ん": " N",
|
||||
"っ": " q",
|
||||
# ここまでに処理されてない ぁぃぅぇぉ はそのまま大文字扱い
|
||||
"ぁ": " a",
|
||||
"ぃ": " i",
|
||||
"ぅ": " u",
|
||||
"ぇ": " e",
|
||||
"ぉ": " o",
|
||||
"ゎ": " w a",
|
||||
# 長音の処理
|
||||
# for (pattern, replace_str) in JULIUS_LONG_VOWEL:
|
||||
# text = pattern.sub(replace_str, text)
|
||||
# text = text.replace("o u", "o:") # おう -> おーの音便
|
||||
"ー": ":",
|
||||
"〜": ":",
|
||||
"−": ":",
|
||||
"-": ":",
|
||||
# その他特別な処理
|
||||
"を": " o",
|
||||
# ここまでに処理されていないゅ等もそのまま大文字扱い(追加)
|
||||
"ゃ": " y a",
|
||||
"ゅ": " y u",
|
||||
"ょ": " y o",
|
||||
}
|
||||
|
||||
|
||||
def hiragana2p(txt: str) -> str:
|
||||
"""
|
||||
Modification of `jaconv.hiragana2julius`.
|
||||
- avoid using `:`, instead, `あーーー` -> `a a a a`.
|
||||
- avoid converting `o u` to `o o` (because the input is already actual `yomi`).
|
||||
- avoid using `N` for `ん` (for compatibility)
|
||||
- use `v` for `ゔ` related text.
|
||||
- add bare `ゃ` `ゅ` `ょ` to `y a` `y u` `y o` (for compatibility).
|
||||
"""
|
||||
|
||||
result = []
|
||||
skip = 0
|
||||
for i in range(len(txt)):
|
||||
if skip:
|
||||
skip -= 1
|
||||
continue
|
||||
|
||||
for length in range(3, 0, -1):
|
||||
if txt[i : i + length] in hiragana_map:
|
||||
result.append(hiragana_map[txt[i : i + length]])
|
||||
skip = length - 1
|
||||
break
|
||||
|
||||
txt = "".join(result)
|
||||
txt = txt.strip()
|
||||
txt = txt.replace(":+", ":")
|
||||
|
||||
# ここまで`jaconv.hiragana2julius`と音便処理と長音処理をのぞいて同じ
|
||||
# ここから`k a:: k i:`→`k a a a k i i`のように`:`の数だけ繰り返す処理
|
||||
pattern = r"(\w)(:*)"
|
||||
replacement = lambda m: m.group(1) + (" " + m.group(1)) * len(m.group(2))
|
||||
|
||||
txt = re.sub(pattern, replacement, txt)
|
||||
txt = txt.replace("N", "n") # 促音のNをnに変換
|
||||
return txt
|
||||
|
||||
|
||||
def kata2phoneme(text: str) -> str:
|
||||
"""Convert katakana text to phonemes."""
|
||||
text = text.strip()
|
||||
if text == "ー":
|
||||
return ["ー"]
|
||||
elif text.startswith("ー"):
|
||||
return ["ー"] + kata2phoneme(text[1:])
|
||||
res = []
|
||||
prev = None
|
||||
while text:
|
||||
if re.match(_MARKS, text):
|
||||
res.append(text)
|
||||
text = text[1:]
|
||||
continue
|
||||
if text.startswith("ー"):
|
||||
if prev:
|
||||
res.append(prev[-1])
|
||||
text = text[1:]
|
||||
continue
|
||||
res += hiragana2p(jaconv.kata2hira(text)).split(" ")
|
||||
break
|
||||
# res = _COLON_RX.sub(":", res)
|
||||
return res
|
||||
|
||||
|
||||
_SYMBOL_TOKENS = set(list("・、。?!"))
|
||||
_NO_YOMI_TOKENS = set(list("「」『』―()[][]"))
|
||||
_MARKS = re.compile(
|
||||
r"[^A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]"
|
||||
)
|
||||
|
||||
|
||||
def text2sep_kata(text: str):
|
||||
parsed = pyopenjtalk.run_frontend(text)
|
||||
res = []
|
||||
sep = []
|
||||
for parts in parsed:
|
||||
word, yomi = replace_punctuation(parts["string"]), parts["pron"].replace(
|
||||
"’", ""
|
||||
)
|
||||
if yomi:
|
||||
if re.match(_MARKS, yomi):
|
||||
if len(word) > 1:
|
||||
word = [replace_punctuation(i) for i in list(word)]
|
||||
yomi = word
|
||||
res += yomi
|
||||
sep += word
|
||||
continue
|
||||
elif word not in rep_map.keys() and word not in rep_map.values():
|
||||
word = ","
|
||||
yomi = word
|
||||
res.append(yomi)
|
||||
else:
|
||||
if word in _SYMBOL_TOKENS:
|
||||
res.append(word)
|
||||
elif word in ("っ", "ッ"):
|
||||
res.append("ッ")
|
||||
elif word in _NO_YOMI_TOKENS:
|
||||
pass
|
||||
else:
|
||||
res.append(word)
|
||||
sep.append(word)
|
||||
return sep, res, get_accent(parsed)
|
||||
|
||||
|
||||
def get_accent(parsed):
|
||||
labels = pyopenjtalk.make_label(parsed)
|
||||
|
||||
phonemes = []
|
||||
accents = []
|
||||
for n, label in enumerate(labels):
|
||||
phoneme = re.search(r"\-([^\+]*)\+", label).group(1)
|
||||
if phoneme not in ["sil", "pau"]:
|
||||
phonemes.append(phoneme.replace("cl", "q").lower())
|
||||
else:
|
||||
continue
|
||||
a1 = int(re.search(r"/A:(\-?[0-9]+)\+", label).group(1))
|
||||
a2 = int(re.search(r"\+(\d+)\+", label).group(1))
|
||||
if re.search(r"\-([^\+]*)\+", labels[n + 1]).group(1) in ["sil", "pau"]:
|
||||
a2_next = -1
|
||||
else:
|
||||
a2_next = int(re.search(r"\+(\d+)\+", labels[n + 1]).group(1))
|
||||
# Falling
|
||||
if a1 == 0 and a2_next == a2 + 1:
|
||||
accents.append(-1)
|
||||
# Rising
|
||||
elif a2 == 1 and a2_next == 2:
|
||||
accents.append(1)
|
||||
else:
|
||||
accents.append(0)
|
||||
return list(zip(phonemes, accents))
|
||||
|
||||
|
||||
_ALPHASYMBOL_YOMI = {
|
||||
"#": "シャープ",
|
||||
"%": "パーセント",
|
||||
"&": "アンド",
|
||||
"+": "プラス",
|
||||
"-": "マイナス",
|
||||
":": "コロン",
|
||||
";": "セミコロン",
|
||||
"<": "小なり",
|
||||
"=": "イコール",
|
||||
">": "大なり",
|
||||
"@": "アット",
|
||||
"a": "エー",
|
||||
"b": "ビー",
|
||||
"c": "シー",
|
||||
"d": "ディー",
|
||||
"e": "イー",
|
||||
"f": "エフ",
|
||||
"g": "ジー",
|
||||
"h": "エイチ",
|
||||
"i": "アイ",
|
||||
"j": "ジェー",
|
||||
"k": "ケー",
|
||||
"l": "エル",
|
||||
"m": "エム",
|
||||
"n": "エヌ",
|
||||
"o": "オー",
|
||||
"p": "ピー",
|
||||
"q": "キュー",
|
||||
"r": "アール",
|
||||
"s": "エス",
|
||||
"t": "ティー",
|
||||
"u": "ユー",
|
||||
"v": "ブイ",
|
||||
"w": "ダブリュー",
|
||||
"x": "エックス",
|
||||
"y": "ワイ",
|
||||
"z": "ゼット",
|
||||
"α": "アルファ",
|
||||
"β": "ベータ",
|
||||
"γ": "ガンマ",
|
||||
"δ": "デルタ",
|
||||
"ε": "イプシロン",
|
||||
"ζ": "ゼータ",
|
||||
"η": "イータ",
|
||||
"θ": "シータ",
|
||||
"ι": "イオタ",
|
||||
"κ": "カッパ",
|
||||
"λ": "ラムダ",
|
||||
"μ": "ミュー",
|
||||
"ν": "ニュー",
|
||||
"ξ": "クサイ",
|
||||
"ο": "オミクロン",
|
||||
"π": "パイ",
|
||||
"ρ": "ロー",
|
||||
"σ": "シグマ",
|
||||
"τ": "タウ",
|
||||
"υ": "ウプシロン",
|
||||
"φ": "ファイ",
|
||||
"χ": "カイ",
|
||||
"ψ": "プサイ",
|
||||
"ω": "オメガ",
|
||||
}
|
||||
|
||||
|
||||
_NUMBER_WITH_SEPARATOR_RX = re.compile("[0-9]{1,3}(,[0-9]{3})+")
|
||||
_CURRENCY_MAP = {"$": "ドル", "¥": "円", "£": "ポンド", "€": "ユーロ"}
|
||||
_CURRENCY_RX = re.compile(r"([$¥£€])([0-9.]*[0-9])")
|
||||
_NUMBER_RX = re.compile(r"[0-9]+(\.[0-9]+)?")
|
||||
|
||||
|
||||
def japanese_convert_numbers_to_words(text: str) -> str:
|
||||
res = _NUMBER_WITH_SEPARATOR_RX.sub(lambda m: m[0].replace(",", ""), text)
|
||||
res = _CURRENCY_RX.sub(lambda m: m[2] + _CURRENCY_MAP.get(m[1], m[1]), res)
|
||||
res = _NUMBER_RX.sub(lambda m: num2words(m[0], lang="ja"), res)
|
||||
return res
|
||||
|
||||
|
||||
def japanese_convert_alpha_symbols_to_words(text: str) -> str:
|
||||
return "".join([_ALPHASYMBOL_YOMI.get(ch, ch) for ch in text.lower()])
|
||||
|
||||
|
||||
def is_japanese_character(char):
|
||||
# 定义日语文字系统的 Unicode 范围
|
||||
japanese_ranges = [
|
||||
(0x3040, 0x309F), # 平假名
|
||||
(0x30A0, 0x30FF), # 片假名
|
||||
(0x4E00, 0x9FFF), # 汉字 (CJK Unified Ideographs)
|
||||
(0x3400, 0x4DBF), # 汉字扩展 A
|
||||
(0x20000, 0x2A6DF), # 汉字扩展 B
|
||||
# 可以根据需要添加其他汉字扩展范围
|
||||
]
|
||||
|
||||
# 将字符的 Unicode 编码转换为整数
|
||||
char_code = ord(char)
|
||||
|
||||
# 检查字符是否在任何一个日语范围内
|
||||
for start, end in japanese_ranges:
|
||||
if start <= char_code <= end:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
|
||||
rep_map = {
|
||||
":": ",",
|
||||
";": ",",
|
||||
",": ",",
|
||||
"。": ".",
|
||||
"!": "!",
|
||||
"?": "?",
|
||||
"\n": ".",
|
||||
".": ".",
|
||||
"…": "...",
|
||||
"···": "...",
|
||||
"・・・": "...",
|
||||
"·": ",",
|
||||
"・": ",",
|
||||
"、": ",",
|
||||
"$": ".",
|
||||
"“": "'",
|
||||
"”": "'",
|
||||
'"': "'",
|
||||
"‘": "'",
|
||||
"’": "'",
|
||||
"(": "'",
|
||||
")": "'",
|
||||
"(": "'",
|
||||
")": "'",
|
||||
"《": "'",
|
||||
"》": "'",
|
||||
"【": "'",
|
||||
"】": "'",
|
||||
"[": "'",
|
||||
"]": "'",
|
||||
"—": "-",
|
||||
"−": "-",
|
||||
"~": "-",
|
||||
"~": "-",
|
||||
"「": "'",
|
||||
"」": "'",
|
||||
}
|
||||
|
||||
|
||||
def replace_punctuation(text):
|
||||
pattern = re.compile("|".join(re.escape(p) for p in rep_map.keys()))
|
||||
|
||||
replaced_text = pattern.sub(lambda x: rep_map[x.group()], text)
|
||||
|
||||
replaced_text = re.sub(
|
||||
r"[^\u3040-\u309F\u30A0-\u30FF\u4E00-\u9FFF\u3400-\u4DBF\u3005"
|
||||
+ "".join(punctuation)
|
||||
+ r"]+",
|
||||
"",
|
||||
replaced_text,
|
||||
)
|
||||
|
||||
return replaced_text
|
||||
|
||||
|
||||
def text_normalize(text):
|
||||
res = unicodedata.normalize("NFKC", text)
|
||||
res = japanese_convert_numbers_to_words(res)
|
||||
# res = "".join([i for i in res if is_japanese_character(i)])
|
||||
res = replace_punctuation(res)
|
||||
res = res.replace("゙", "")
|
||||
return res
|
||||
|
||||
|
||||
def distribute_phone(n_phone, n_word):
|
||||
phones_per_word = [0] * n_word
|
||||
for task in range(n_phone):
|
||||
min_tasks = min(phones_per_word)
|
||||
min_index = phones_per_word.index(min_tasks)
|
||||
phones_per_word[min_index] += 1
|
||||
return phones_per_word
|
||||
|
||||
|
||||
def handle_long(sep_phonemes):
|
||||
for i in range(len(sep_phonemes)):
|
||||
if sep_phonemes[i][0] == "ー":
|
||||
sep_phonemes[i][0] = sep_phonemes[i - 1][-1]
|
||||
if "ー" in sep_phonemes[i]:
|
||||
for j in range(len(sep_phonemes[i])):
|
||||
if sep_phonemes[i][j] == "ー":
|
||||
sep_phonemes[i][j] = sep_phonemes[i][j - 1][-1]
|
||||
return sep_phonemes
|
||||
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("./utils/bert_vits2/bert/deberta-v2-large-japanese-char-wwm")
|
||||
|
||||
|
||||
def align_tones(phones, tones):
|
||||
res = []
|
||||
for pho in phones:
|
||||
temp = [0] * len(pho)
|
||||
for idx, p in enumerate(pho):
|
||||
if len(tones) == 0:
|
||||
break
|
||||
if p == tones[0][0]:
|
||||
temp[idx] = tones[0][1]
|
||||
if idx > 0:
|
||||
temp[idx] += temp[idx - 1]
|
||||
tones.pop(0)
|
||||
temp = [0] + temp
|
||||
temp = temp[:-1]
|
||||
if -1 in temp:
|
||||
temp = [i + 1 for i in temp]
|
||||
res.append(temp)
|
||||
res = [i for j in res for i in j]
|
||||
assert not any([i < 0 for i in res]) and not any([i > 1 for i in res])
|
||||
return res
|
||||
|
||||
|
||||
def rearrange_tones(tones, phones):
|
||||
res = [0] * len(tones)
|
||||
for i in range(len(tones)):
|
||||
if i == 0:
|
||||
if tones[i] not in punctuation:
|
||||
res[i] = 1
|
||||
elif tones[i] == prev:
|
||||
if phones[i] in punctuation:
|
||||
res[i] = 0
|
||||
else:
|
||||
res[i] = 1
|
||||
elif tones[i] > prev:
|
||||
res[i] = 2
|
||||
elif tones[i] < prev:
|
||||
res[i - 1] = 3
|
||||
res[i] = 1
|
||||
prev = tones[i]
|
||||
return res
|
||||
|
||||
|
||||
def g2p(norm_text):
|
||||
sep_text, sep_kata, acc = text2sep_kata(norm_text)
|
||||
sep_tokenized = []
|
||||
for i in sep_text:
|
||||
if i not in punctuation:
|
||||
sep_tokenized.append(tokenizer.tokenize(i))
|
||||
else:
|
||||
sep_tokenized.append([i])
|
||||
|
||||
sep_phonemes = handle_long([kata2phoneme(i) for i in sep_kata])
|
||||
# 异常处理,MeCab不认识的词的话会一路传到这里来,然后炸掉。目前来看只有那些超级稀有的生僻词会出现这种情况
|
||||
for i in sep_phonemes:
|
||||
for j in i:
|
||||
assert j in symbols, (sep_text, sep_kata, sep_phonemes)
|
||||
tones = align_tones(sep_phonemes, acc)
|
||||
|
||||
word2ph = []
|
||||
for token, phoneme in zip(sep_tokenized, sep_phonemes):
|
||||
phone_len = len(phoneme)
|
||||
word_len = len(token)
|
||||
|
||||
aaa = distribute_phone(phone_len, word_len)
|
||||
word2ph += aaa
|
||||
phones = ["_"] + [j for i in sep_phonemes for j in i] + ["_"]
|
||||
# tones = [0] + rearrange_tones(tones, phones[1:-1]) + [0]
|
||||
tones = [0] + tones + [0]
|
||||
word2ph = [1] + word2ph + [1]
|
||||
assert len(phones) == len(tones)
|
||||
return phones, tones, word2ph
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
tokenizer = AutoTokenizer.from_pretrained("./utils/bert_vits2/bert/deberta-v2-large-japanese")
|
||||
text = "hello,こんにちは、世界ー!……"
|
||||
from text.japanese_bert import get_bert_feature
|
||||
|
||||
text = text_normalize(text)
|
||||
print(text)
|
||||
|
||||
phones, tones, word2ph = g2p(text)
|
||||
bert = get_bert_feature(text, word2ph)
|
||||
|
||||
print(phones, tones, word2ph, bert.shape)
|
|
@ -0,0 +1,65 @@
|
|||
import sys
|
||||
|
||||
import torch
|
||||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||
|
||||
from ..config import config
|
||||
from ..text.japanese import text2sep_kata
|
||||
|
||||
LOCAL_PATH = "./utils/bert_vits2/bert/deberta-v2-large-japanese-char-wwm"
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(LOCAL_PATH)
|
||||
|
||||
models = dict()
|
||||
|
||||
|
||||
def get_bert_feature(
|
||||
text,
|
||||
word2ph,
|
||||
device=config.bert_gen_config.device,
|
||||
style_text=None,
|
||||
style_weight=0.7,
|
||||
):
|
||||
text = "".join(text2sep_kata(text)[0])
|
||||
if style_text:
|
||||
style_text = "".join(text2sep_kata(style_text)[0])
|
||||
if (
|
||||
sys.platform == "darwin"
|
||||
and torch.backends.mps.is_available()
|
||||
and device == "cpu"
|
||||
):
|
||||
device = "mps"
|
||||
if not device:
|
||||
device = "cuda"
|
||||
if device not in models.keys():
|
||||
models[device] = AutoModelForMaskedLM.from_pretrained(LOCAL_PATH).to(device)
|
||||
with torch.no_grad():
|
||||
inputs = tokenizer(text, return_tensors="pt")
|
||||
for i in inputs:
|
||||
inputs[i] = inputs[i].to(device)
|
||||
res = models[device](**inputs, output_hidden_states=True)
|
||||
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()
|
||||
if style_text:
|
||||
style_inputs = tokenizer(style_text, return_tensors="pt")
|
||||
for i in style_inputs:
|
||||
style_inputs[i] = style_inputs[i].to(device)
|
||||
style_res = models[device](**style_inputs, output_hidden_states=True)
|
||||
style_res = torch.cat(style_res["hidden_states"][-3:-2], -1)[0].cpu()
|
||||
style_res_mean = style_res.mean(0)
|
||||
|
||||
assert len(word2ph) == len(text) + 2
|
||||
word2phone = word2ph
|
||||
phone_level_feature = []
|
||||
for i in range(len(word2phone)):
|
||||
if style_text:
|
||||
repeat_feature = (
|
||||
res[i].repeat(word2phone[i], 1) * (1 - style_weight)
|
||||
+ style_res_mean.repeat(word2phone[i], 1) * style_weight
|
||||
)
|
||||
else:
|
||||
repeat_feature = res[i].repeat(word2phone[i], 1)
|
||||
phone_level_feature.append(repeat_feature)
|
||||
|
||||
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
||||
|
||||
return phone_level_feature.T
|
|
@ -0,0 +1,429 @@
|
|||
a AA a
|
||||
ai AA ai
|
||||
an AA an
|
||||
ang AA ang
|
||||
ao AA ao
|
||||
ba b a
|
||||
bai b ai
|
||||
ban b an
|
||||
bang b ang
|
||||
bao b ao
|
||||
bei b ei
|
||||
ben b en
|
||||
beng b eng
|
||||
bi b i
|
||||
bian b ian
|
||||
biao b iao
|
||||
bie b ie
|
||||
bin b in
|
||||
bing b ing
|
||||
bo b o
|
||||
bu b u
|
||||
ca c a
|
||||
cai c ai
|
||||
can c an
|
||||
cang c ang
|
||||
cao c ao
|
||||
ce c e
|
||||
cei c ei
|
||||
cen c en
|
||||
ceng c eng
|
||||
cha ch a
|
||||
chai ch ai
|
||||
chan ch an
|
||||
chang ch ang
|
||||
chao ch ao
|
||||
che ch e
|
||||
chen ch en
|
||||
cheng ch eng
|
||||
chi ch ir
|
||||
chong ch ong
|
||||
chou ch ou
|
||||
chu ch u
|
||||
chua ch ua
|
||||
chuai ch uai
|
||||
chuan ch uan
|
||||
chuang ch uang
|
||||
chui ch ui
|
||||
chun ch un
|
||||
chuo ch uo
|
||||
ci c i0
|
||||
cong c ong
|
||||
cou c ou
|
||||
cu c u
|
||||
cuan c uan
|
||||
cui c ui
|
||||
cun c un
|
||||
cuo c uo
|
||||
da d a
|
||||
dai d ai
|
||||
dan d an
|
||||
dang d ang
|
||||
dao d ao
|
||||
de d e
|
||||
dei d ei
|
||||
den d en
|
||||
deng d eng
|
||||
di d i
|
||||
dia d ia
|
||||
dian d ian
|
||||
diao d iao
|
||||
die d ie
|
||||
ding d ing
|
||||
diu d iu
|
||||
dong d ong
|
||||
dou d ou
|
||||
du d u
|
||||
duan d uan
|
||||
dui d ui
|
||||
dun d un
|
||||
duo d uo
|
||||
e EE e
|
||||
ei EE ei
|
||||
en EE en
|
||||
eng EE eng
|
||||
er EE er
|
||||
fa f a
|
||||
fan f an
|
||||
fang f ang
|
||||
fei f ei
|
||||
fen f en
|
||||
feng f eng
|
||||
fo f o
|
||||
fou f ou
|
||||
fu f u
|
||||
ga g a
|
||||
gai g ai
|
||||
gan g an
|
||||
gang g ang
|
||||
gao g ao
|
||||
ge g e
|
||||
gei g ei
|
||||
gen g en
|
||||
geng g eng
|
||||
gong g ong
|
||||
gou g ou
|
||||
gu g u
|
||||
gua g ua
|
||||
guai g uai
|
||||
guan g uan
|
||||
guang g uang
|
||||
gui g ui
|
||||
gun g un
|
||||
guo g uo
|
||||
ha h a
|
||||
hai h ai
|
||||
han h an
|
||||
hang h ang
|
||||
hao h ao
|
||||
he h e
|
||||
hei h ei
|
||||
hen h en
|
||||
heng h eng
|
||||
hong h ong
|
||||
hou h ou
|
||||
hu h u
|
||||
hua h ua
|
||||
huai h uai
|
||||
huan h uan
|
||||
huang h uang
|
||||
hui h ui
|
||||
hun h un
|
||||
huo h uo
|
||||
ji j i
|
||||
jia j ia
|
||||
jian j ian
|
||||
jiang j iang
|
||||
jiao j iao
|
||||
jie j ie
|
||||
jin j in
|
||||
jing j ing
|
||||
jiong j iong
|
||||
jiu j iu
|
||||
ju j v
|
||||
jv j v
|
||||
juan j van
|
||||
jvan j van
|
||||
jue j ve
|
||||
jve j ve
|
||||
jun j vn
|
||||
jvn j vn
|
||||
ka k a
|
||||
kai k ai
|
||||
kan k an
|
||||
kang k ang
|
||||
kao k ao
|
||||
ke k e
|
||||
kei k ei
|
||||
ken k en
|
||||
keng k eng
|
||||
kong k ong
|
||||
kou k ou
|
||||
ku k u
|
||||
kua k ua
|
||||
kuai k uai
|
||||
kuan k uan
|
||||
kuang k uang
|
||||
kui k ui
|
||||
kun k un
|
||||
kuo k uo
|
||||
la l a
|
||||
lai l ai
|
||||
lan l an
|
||||
lang l ang
|
||||
lao l ao
|
||||
le l e
|
||||
lei l ei
|
||||
leng l eng
|
||||
li l i
|
||||
lia l ia
|
||||
lian l ian
|
||||
liang l iang
|
||||
liao l iao
|
||||
lie l ie
|
||||
lin l in
|
||||
ling l ing
|
||||
liu l iu
|
||||
lo l o
|
||||
long l ong
|
||||
lou l ou
|
||||
lu l u
|
||||
luan l uan
|
||||
lun l un
|
||||
luo l uo
|
||||
lv l v
|
||||
lve l ve
|
||||
ma m a
|
||||
mai m ai
|
||||
man m an
|
||||
mang m ang
|
||||
mao m ao
|
||||
me m e
|
||||
mei m ei
|
||||
men m en
|
||||
meng m eng
|
||||
mi m i
|
||||
mian m ian
|
||||
miao m iao
|
||||
mie m ie
|
||||
min m in
|
||||
ming m ing
|
||||
miu m iu
|
||||
mo m o
|
||||
mou m ou
|
||||
mu m u
|
||||
na n a
|
||||
nai n ai
|
||||
nan n an
|
||||
nang n ang
|
||||
nao n ao
|
||||
ne n e
|
||||
nei n ei
|
||||
nen n en
|
||||
neng n eng
|
||||
ni n i
|
||||
nian n ian
|
||||
niang n iang
|
||||
niao n iao
|
||||
nie n ie
|
||||
nin n in
|
||||
ning n ing
|
||||
niu n iu
|
||||
nong n ong
|
||||
nou n ou
|
||||
nu n u
|
||||
nuan n uan
|
||||
nun n un
|
||||
nuo n uo
|
||||
nv n v
|
||||
nve n ve
|
||||
o OO o
|
||||
ou OO ou
|
||||
pa p a
|
||||
pai p ai
|
||||
pan p an
|
||||
pang p ang
|
||||
pao p ao
|
||||
pei p ei
|
||||
pen p en
|
||||
peng p eng
|
||||
pi p i
|
||||
pian p ian
|
||||
piao p iao
|
||||
pie p ie
|
||||
pin p in
|
||||
ping p ing
|
||||
po p o
|
||||
pou p ou
|
||||
pu p u
|
||||
qi q i
|
||||
qia q ia
|
||||
qian q ian
|
||||
qiang q iang
|
||||
qiao q iao
|
||||
qie q ie
|
||||
qin q in
|
||||
qing q ing
|
||||
qiong q iong
|
||||
qiu q iu
|
||||
qu q v
|
||||
qv q v
|
||||
quan q van
|
||||
qvan q van
|
||||
que q ve
|
||||
qve q ve
|
||||
qun q vn
|
||||
qvn q vn
|
||||
ran r an
|
||||
rang r ang
|
||||
rao r ao
|
||||
re r e
|
||||
ren r en
|
||||
reng r eng
|
||||
ri r ir
|
||||
rong r ong
|
||||
rou r ou
|
||||
ru r u
|
||||
rua r ua
|
||||
ruan r uan
|
||||
rui r ui
|
||||
run r un
|
||||
ruo r uo
|
||||
sa s a
|
||||
sai s ai
|
||||
san s an
|
||||
sang s ang
|
||||
sao s ao
|
||||
se s e
|
||||
sen s en
|
||||
seng s eng
|
||||
sha sh a
|
||||
shai sh ai
|
||||
shan sh an
|
||||
shang sh ang
|
||||
shao sh ao
|
||||
she sh e
|
||||
shei sh ei
|
||||
shen sh en
|
||||
sheng sh eng
|
||||
shi sh ir
|
||||
shou sh ou
|
||||
shu sh u
|
||||
shua sh ua
|
||||
shuai sh uai
|
||||
shuan sh uan
|
||||
shuang sh uang
|
||||
shui sh ui
|
||||
shun sh un
|
||||
shuo sh uo
|
||||
si s i0
|
||||
song s ong
|
||||
sou s ou
|
||||
su s u
|
||||
suan s uan
|
||||
sui s ui
|
||||
sun s un
|
||||
suo s uo
|
||||
ta t a
|
||||
tai t ai
|
||||
tan t an
|
||||
tang t ang
|
||||
tao t ao
|
||||
te t e
|
||||
tei t ei
|
||||
teng t eng
|
||||
ti t i
|
||||
tian t ian
|
||||
tiao t iao
|
||||
tie t ie
|
||||
ting t ing
|
||||
tong t ong
|
||||
tou t ou
|
||||
tu t u
|
||||
tuan t uan
|
||||
tui t ui
|
||||
tun t un
|
||||
tuo t uo
|
||||
wa w a
|
||||
wai w ai
|
||||
wan w an
|
||||
wang w ang
|
||||
wei w ei
|
||||
wen w en
|
||||
weng w eng
|
||||
wo w o
|
||||
wu w u
|
||||
xi x i
|
||||
xia x ia
|
||||
xian x ian
|
||||
xiang x iang
|
||||
xiao x iao
|
||||
xie x ie
|
||||
xin x in
|
||||
xing x ing
|
||||
xiong x iong
|
||||
xiu x iu
|
||||
xu x v
|
||||
xv x v
|
||||
xuan x van
|
||||
xvan x van
|
||||
xue x ve
|
||||
xve x ve
|
||||
xun x vn
|
||||
xvn x vn
|
||||
ya y a
|
||||
yan y En
|
||||
yang y ang
|
||||
yao y ao
|
||||
ye y E
|
||||
yi y i
|
||||
yin y in
|
||||
ying y ing
|
||||
yo y o
|
||||
yong y ong
|
||||
you y ou
|
||||
yu y v
|
||||
yv y v
|
||||
yuan y van
|
||||
yvan y van
|
||||
yue y ve
|
||||
yve y ve
|
||||
yun y vn
|
||||
yvn y vn
|
||||
za z a
|
||||
zai z ai
|
||||
zan z an
|
||||
zang z ang
|
||||
zao z ao
|
||||
ze z e
|
||||
zei z ei
|
||||
zen z en
|
||||
zeng z eng
|
||||
zha zh a
|
||||
zhai zh ai
|
||||
zhan zh an
|
||||
zhang zh ang
|
||||
zhao zh ao
|
||||
zhe zh e
|
||||
zhei zh ei
|
||||
zhen zh en
|
||||
zheng zh eng
|
||||
zhi zh ir
|
||||
zhong zh ong
|
||||
zhou zh ou
|
||||
zhu zh u
|
||||
zhua zh ua
|
||||
zhuai zh uai
|
||||
zhuan zh uan
|
||||
zhuang zh uang
|
||||
zhui zh ui
|
||||
zhun zh un
|
||||
zhuo zh uo
|
||||
zi z i0
|
||||
zong z ong
|
||||
zou z ou
|
||||
zu z u
|
||||
zuan z uan
|
||||
zui z ui
|
||||
zun z un
|
||||
zuo z uo
|
|
@ -0,0 +1,187 @@
|
|||
punctuation = ["!", "?", "…", ",", ".", "'", "-"]
|
||||
pu_symbols = punctuation + ["SP", "UNK"]
|
||||
pad = "_"
|
||||
|
||||
# chinese
|
||||
zh_symbols = [
|
||||
"E",
|
||||
"En",
|
||||
"a",
|
||||
"ai",
|
||||
"an",
|
||||
"ang",
|
||||
"ao",
|
||||
"b",
|
||||
"c",
|
||||
"ch",
|
||||
"d",
|
||||
"e",
|
||||
"ei",
|
||||
"en",
|
||||
"eng",
|
||||
"er",
|
||||
"f",
|
||||
"g",
|
||||
"h",
|
||||
"i",
|
||||
"i0",
|
||||
"ia",
|
||||
"ian",
|
||||
"iang",
|
||||
"iao",
|
||||
"ie",
|
||||
"in",
|
||||
"ing",
|
||||
"iong",
|
||||
"ir",
|
||||
"iu",
|
||||
"j",
|
||||
"k",
|
||||
"l",
|
||||
"m",
|
||||
"n",
|
||||
"o",
|
||||
"ong",
|
||||
"ou",
|
||||
"p",
|
||||
"q",
|
||||
"r",
|
||||
"s",
|
||||
"sh",
|
||||
"t",
|
||||
"u",
|
||||
"ua",
|
||||
"uai",
|
||||
"uan",
|
||||
"uang",
|
||||
"ui",
|
||||
"un",
|
||||
"uo",
|
||||
"v",
|
||||
"van",
|
||||
"ve",
|
||||
"vn",
|
||||
"w",
|
||||
"x",
|
||||
"y",
|
||||
"z",
|
||||
"zh",
|
||||
"AA",
|
||||
"EE",
|
||||
"OO",
|
||||
]
|
||||
num_zh_tones = 6
|
||||
|
||||
# japanese
|
||||
ja_symbols = [
|
||||
"N",
|
||||
"a",
|
||||
"a:",
|
||||
"b",
|
||||
"by",
|
||||
"ch",
|
||||
"d",
|
||||
"dy",
|
||||
"e",
|
||||
"e:",
|
||||
"f",
|
||||
"g",
|
||||
"gy",
|
||||
"h",
|
||||
"hy",
|
||||
"i",
|
||||
"i:",
|
||||
"j",
|
||||
"k",
|
||||
"ky",
|
||||
"m",
|
||||
"my",
|
||||
"n",
|
||||
"ny",
|
||||
"o",
|
||||
"o:",
|
||||
"p",
|
||||
"py",
|
||||
"q",
|
||||
"r",
|
||||
"ry",
|
||||
"s",
|
||||
"sh",
|
||||
"t",
|
||||
"ts",
|
||||
"ty",
|
||||
"u",
|
||||
"u:",
|
||||
"w",
|
||||
"y",
|
||||
"z",
|
||||
"zy",
|
||||
]
|
||||
num_ja_tones = 2
|
||||
|
||||
# English
|
||||
en_symbols = [
|
||||
"aa",
|
||||
"ae",
|
||||
"ah",
|
||||
"ao",
|
||||
"aw",
|
||||
"ay",
|
||||
"b",
|
||||
"ch",
|
||||
"d",
|
||||
"dh",
|
||||
"eh",
|
||||
"er",
|
||||
"ey",
|
||||
"f",
|
||||
"g",
|
||||
"hh",
|
||||
"ih",
|
||||
"iy",
|
||||
"jh",
|
||||
"k",
|
||||
"l",
|
||||
"m",
|
||||
"n",
|
||||
"ng",
|
||||
"ow",
|
||||
"oy",
|
||||
"p",
|
||||
"r",
|
||||
"s",
|
||||
"sh",
|
||||
"t",
|
||||
"th",
|
||||
"uh",
|
||||
"uw",
|
||||
"V",
|
||||
"w",
|
||||
"y",
|
||||
"z",
|
||||
"zh",
|
||||
]
|
||||
num_en_tones = 4
|
||||
|
||||
# combine all symbols
|
||||
normal_symbols = sorted(set(zh_symbols + ja_symbols + en_symbols))
|
||||
symbols = [pad] + normal_symbols + pu_symbols
|
||||
sil_phonemes_ids = [symbols.index(i) for i in pu_symbols]
|
||||
|
||||
# combine all tones
|
||||
num_tones = num_zh_tones + num_ja_tones + num_en_tones
|
||||
|
||||
# language maps
|
||||
language_id_map = {"ZH": 0, "JP": 1, "EN": 2}
|
||||
num_languages = len(language_id_map.keys())
|
||||
|
||||
language_tone_start_map = {
|
||||
"ZH": 0,
|
||||
"JP": num_zh_tones,
|
||||
"EN": num_zh_tones + num_ja_tones,
|
||||
}
|
||||
|
||||
if __name__ == "__main__":
|
||||
a = set(zh_symbols)
|
||||
b = set(en_symbols)
|
||||
print(sorted(a & b))
|
|
@ -0,0 +1,776 @@
|
|||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from typing import List
|
||||
from typing import Tuple
|
||||
|
||||
import jieba
|
||||
from pypinyin import lazy_pinyin
|
||||
from pypinyin import Style
|
||||
|
||||
|
||||
class ToneSandhi:
|
||||
def __init__(self):
|
||||
self.must_neural_tone_words = {
|
||||
"麻烦",
|
||||
"麻利",
|
||||
"鸳鸯",
|
||||
"高粱",
|
||||
"骨头",
|
||||
"骆驼",
|
||||
"马虎",
|
||||
"首饰",
|
||||
"馒头",
|
||||
"馄饨",
|
||||
"风筝",
|
||||
"难为",
|
||||
"队伍",
|
||||
"阔气",
|
||||
"闺女",
|
||||
"门道",
|
||||
"锄头",
|
||||
"铺盖",
|
||||
"铃铛",
|
||||
"铁匠",
|
||||
"钥匙",
|
||||
"里脊",
|
||||
"里头",
|
||||
"部分",
|
||||
"那么",
|
||||
"道士",
|
||||
"造化",
|
||||
"迷糊",
|
||||
"连累",
|
||||
"这么",
|
||||
"这个",
|
||||
"运气",
|
||||
"过去",
|
||||
"软和",
|
||||
"转悠",
|
||||
"踏实",
|
||||
"跳蚤",
|
||||
"跟头",
|
||||
"趔趄",
|
||||
"财主",
|
||||
"豆腐",
|
||||
"讲究",
|
||||
"记性",
|
||||
"记号",
|
||||
"认识",
|
||||
"规矩",
|
||||
"见识",
|
||||
"裁缝",
|
||||
"补丁",
|
||||
"衣裳",
|
||||
"衣服",
|
||||
"衙门",
|
||||
"街坊",
|
||||
"行李",
|
||||
"行当",
|
||||
"蛤蟆",
|
||||
"蘑菇",
|
||||
"薄荷",
|
||||
"葫芦",
|
||||
"葡萄",
|
||||
"萝卜",
|
||||
"荸荠",
|
||||
"苗条",
|
||||
"苗头",
|
||||
"苍蝇",
|
||||
"芝麻",
|
||||
"舒服",
|
||||
"舒坦",
|
||||
"舌头",
|
||||
"自在",
|
||||
"膏药",
|
||||
"脾气",
|
||||
"脑袋",
|
||||
"脊梁",
|
||||
"能耐",
|
||||
"胳膊",
|
||||
"胭脂",
|
||||
"胡萝",
|
||||
"胡琴",
|
||||
"胡同",
|
||||
"聪明",
|
||||
"耽误",
|
||||
"耽搁",
|
||||
"耷拉",
|
||||
"耳朵",
|
||||
"老爷",
|
||||
"老实",
|
||||
"老婆",
|
||||
"老头",
|
||||
"老太",
|
||||
"翻腾",
|
||||
"罗嗦",
|
||||
"罐头",
|
||||
"编辑",
|
||||
"结实",
|
||||
"红火",
|
||||
"累赘",
|
||||
"糨糊",
|
||||
"糊涂",
|
||||
"精神",
|
||||
"粮食",
|
||||
"簸箕",
|
||||
"篱笆",
|
||||
"算计",
|
||||
"算盘",
|
||||
"答应",
|
||||
"笤帚",
|
||||
"笑语",
|
||||
"笑话",
|
||||
"窟窿",
|
||||
"窝囊",
|
||||
"窗户",
|
||||
"稳当",
|
||||
"稀罕",
|
||||
"称呼",
|
||||
"秧歌",
|
||||
"秀气",
|
||||
"秀才",
|
||||
"福气",
|
||||
"祖宗",
|
||||
"砚台",
|
||||
"码头",
|
||||
"石榴",
|
||||
"石头",
|
||||
"石匠",
|
||||
"知识",
|
||||
"眼睛",
|
||||
"眯缝",
|
||||
"眨巴",
|
||||
"眉毛",
|
||||
"相声",
|
||||
"盘算",
|
||||
"白净",
|
||||
"痢疾",
|
||||
"痛快",
|
||||
"疟疾",
|
||||
"疙瘩",
|
||||
"疏忽",
|
||||
"畜生",
|
||||
"生意",
|
||||
"甘蔗",
|
||||
"琵琶",
|
||||
"琢磨",
|
||||
"琉璃",
|
||||
"玻璃",
|
||||
"玫瑰",
|
||||
"玄乎",
|
||||
"狐狸",
|
||||
"状元",
|
||||
"特务",
|
||||
"牲口",
|
||||
"牙碜",
|
||||
"牌楼",
|
||||
"爽快",
|
||||
"爱人",
|
||||
"热闹",
|
||||
"烧饼",
|
||||
"烟筒",
|
||||
"烂糊",
|
||||
"点心",
|
||||
"炊帚",
|
||||
"灯笼",
|
||||
"火候",
|
||||
"漂亮",
|
||||
"滑溜",
|
||||
"溜达",
|
||||
"温和",
|
||||
"清楚",
|
||||
"消息",
|
||||
"浪头",
|
||||
"活泼",
|
||||
"比方",
|
||||
"正经",
|
||||
"欺负",
|
||||
"模糊",
|
||||
"槟榔",
|
||||
"棺材",
|
||||
"棒槌",
|
||||
"棉花",
|
||||
"核桃",
|
||||
"栅栏",
|
||||
"柴火",
|
||||
"架势",
|
||||
"枕头",
|
||||
"枇杷",
|
||||
"机灵",
|
||||
"本事",
|
||||
"木头",
|
||||
"木匠",
|
||||
"朋友",
|
||||
"月饼",
|
||||
"月亮",
|
||||
"暖和",
|
||||
"明白",
|
||||
"时候",
|
||||
"新鲜",
|
||||
"故事",
|
||||
"收拾",
|
||||
"收成",
|
||||
"提防",
|
||||
"挖苦",
|
||||
"挑剔",
|
||||
"指甲",
|
||||
"指头",
|
||||
"拾掇",
|
||||
"拳头",
|
||||
"拨弄",
|
||||
"招牌",
|
||||
"招呼",
|
||||
"抬举",
|
||||
"护士",
|
||||
"折腾",
|
||||
"扫帚",
|
||||
"打量",
|
||||
"打算",
|
||||
"打点",
|
||||
"打扮",
|
||||
"打听",
|
||||
"打发",
|
||||
"扎实",
|
||||
"扁担",
|
||||
"戒指",
|
||||
"懒得",
|
||||
"意识",
|
||||
"意思",
|
||||
"情形",
|
||||
"悟性",
|
||||
"怪物",
|
||||
"思量",
|
||||
"怎么",
|
||||
"念头",
|
||||
"念叨",
|
||||
"快活",
|
||||
"忙活",
|
||||
"志气",
|
||||
"心思",
|
||||
"得罪",
|
||||
"张罗",
|
||||
"弟兄",
|
||||
"开通",
|
||||
"应酬",
|
||||
"庄稼",
|
||||
"干事",
|
||||
"帮手",
|
||||
"帐篷",
|
||||
"希罕",
|
||||
"师父",
|
||||
"师傅",
|
||||
"巴结",
|
||||
"巴掌",
|
||||
"差事",
|
||||
"工夫",
|
||||
"岁数",
|
||||
"屁股",
|
||||
"尾巴",
|
||||
"少爷",
|
||||
"小气",
|
||||
"小伙",
|
||||
"将就",
|
||||
"对头",
|
||||
"对付",
|
||||
"寡妇",
|
||||
"家伙",
|
||||
"客气",
|
||||
"实在",
|
||||
"官司",
|
||||
"学问",
|
||||
"学生",
|
||||
"字号",
|
||||
"嫁妆",
|
||||
"媳妇",
|
||||
"媒人",
|
||||
"婆家",
|
||||
"娘家",
|
||||
"委屈",
|
||||
"姑娘",
|
||||
"姐夫",
|
||||
"妯娌",
|
||||
"妥当",
|
||||
"妖精",
|
||||
"奴才",
|
||||
"女婿",
|
||||
"头发",
|
||||
"太阳",
|
||||
"大爷",
|
||||
"大方",
|
||||
"大意",
|
||||
"大夫",
|
||||
"多少",
|
||||
"多么",
|
||||
"外甥",
|
||||
"壮实",
|
||||
"地道",
|
||||
"地方",
|
||||
"在乎",
|
||||
"困难",
|
||||
"嘴巴",
|
||||
"嘱咐",
|
||||
"嘟囔",
|
||||
"嘀咕",
|
||||
"喜欢",
|
||||
"喇嘛",
|
||||
"喇叭",
|
||||
"商量",
|
||||
"唾沫",
|
||||
"哑巴",
|
||||
"哈欠",
|
||||
"哆嗦",
|
||||
"咳嗽",
|
||||
"和尚",
|
||||
"告诉",
|
||||
"告示",
|
||||
"含糊",
|
||||
"吓唬",
|
||||
"后头",
|
||||
"名字",
|
||||
"名堂",
|
||||
"合同",
|
||||
"吆喝",
|
||||
"叫唤",
|
||||
"口袋",
|
||||
"厚道",
|
||||
"厉害",
|
||||
"千斤",
|
||||
"包袱",
|
||||
"包涵",
|
||||
"匀称",
|
||||
"勤快",
|
||||
"动静",
|
||||
"动弹",
|
||||
"功夫",
|
||||
"力气",
|
||||
"前头",
|
||||
"刺猬",
|
||||
"刺激",
|
||||
"别扭",
|
||||
"利落",
|
||||
"利索",
|
||||
"利害",
|
||||
"分析",
|
||||
"出息",
|
||||
"凑合",
|
||||
"凉快",
|
||||
"冷战",
|
||||
"冤枉",
|
||||
"冒失",
|
||||
"养活",
|
||||
"关系",
|
||||
"先生",
|
||||
"兄弟",
|
||||
"便宜",
|
||||
"使唤",
|
||||
"佩服",
|
||||
"作坊",
|
||||
"体面",
|
||||
"位置",
|
||||
"似的",
|
||||
"伙计",
|
||||
"休息",
|
||||
"什么",
|
||||
"人家",
|
||||
"亲戚",
|
||||
"亲家",
|
||||
"交情",
|
||||
"云彩",
|
||||
"事情",
|
||||
"买卖",
|
||||
"主意",
|
||||
"丫头",
|
||||
"丧气",
|
||||
"两口",
|
||||
"东西",
|
||||
"东家",
|
||||
"世故",
|
||||
"不由",
|
||||
"不在",
|
||||
"下水",
|
||||
"下巴",
|
||||
"上头",
|
||||
"上司",
|
||||
"丈夫",
|
||||
"丈人",
|
||||
"一辈",
|
||||
"那个",
|
||||
"菩萨",
|
||||
"父亲",
|
||||
"母亲",
|
||||
"咕噜",
|
||||
"邋遢",
|
||||
"费用",
|
||||
"冤家",
|
||||
"甜头",
|
||||
"介绍",
|
||||
"荒唐",
|
||||
"大人",
|
||||
"泥鳅",
|
||||
"幸福",
|
||||
"熟悉",
|
||||
"计划",
|
||||
"扑腾",
|
||||
"蜡烛",
|
||||
"姥爷",
|
||||
"照顾",
|
||||
"喉咙",
|
||||
"吉他",
|
||||
"弄堂",
|
||||
"蚂蚱",
|
||||
"凤凰",
|
||||
"拖沓",
|
||||
"寒碜",
|
||||
"糟蹋",
|
||||
"倒腾",
|
||||
"报复",
|
||||
"逻辑",
|
||||
"盘缠",
|
||||
"喽啰",
|
||||
"牢骚",
|
||||
"咖喱",
|
||||
"扫把",
|
||||
"惦记",
|
||||
}
|
||||
self.must_not_neural_tone_words = {
|
||||
"男子",
|
||||
"女子",
|
||||
"分子",
|
||||
"原子",
|
||||
"量子",
|
||||
"莲子",
|
||||
"石子",
|
||||
"瓜子",
|
||||
"电子",
|
||||
"人人",
|
||||
"虎虎",
|
||||
}
|
||||
self.punc = ":,;。?!“”‘’':,;.?!"
|
||||
|
||||
# the meaning of jieba pos tag: https://blog.csdn.net/weixin_44174352/article/details/113731041
|
||||
# e.g.
|
||||
# word: "家里"
|
||||
# pos: "s"
|
||||
# finals: ['ia1', 'i3']
|
||||
def _neural_sandhi(self, word: str, pos: str, finals: List[str]) -> List[str]:
|
||||
# reduplication words for n. and v. e.g. 奶奶, 试试, 旺旺
|
||||
for j, item in enumerate(word):
|
||||
if (
|
||||
j - 1 >= 0
|
||||
and item == word[j - 1]
|
||||
and pos[0] in {"n", "v", "a"}
|
||||
and word not in self.must_not_neural_tone_words
|
||||
):
|
||||
finals[j] = finals[j][:-1] + "5"
|
||||
ge_idx = word.find("个")
|
||||
if len(word) >= 1 and word[-1] in "吧呢啊呐噻嘛吖嗨呐哦哒额滴哩哟喽啰耶喔诶":
|
||||
finals[-1] = finals[-1][:-1] + "5"
|
||||
elif len(word) >= 1 and word[-1] in "的地得":
|
||||
finals[-1] = finals[-1][:-1] + "5"
|
||||
# e.g. 走了, 看着, 去过
|
||||
# elif len(word) == 1 and word in "了着过" and pos in {"ul", "uz", "ug"}:
|
||||
# finals[-1] = finals[-1][:-1] + "5"
|
||||
elif (
|
||||
len(word) > 1
|
||||
and word[-1] in "们子"
|
||||
and pos in {"r", "n"}
|
||||
and word not in self.must_not_neural_tone_words
|
||||
):
|
||||
finals[-1] = finals[-1][:-1] + "5"
|
||||
# e.g. 桌上, 地下, 家里
|
||||
elif len(word) > 1 and word[-1] in "上下里" and pos in {"s", "l", "f"}:
|
||||
finals[-1] = finals[-1][:-1] + "5"
|
||||
# e.g. 上来, 下去
|
||||
elif len(word) > 1 and word[-1] in "来去" and word[-2] in "上下进出回过起开":
|
||||
finals[-1] = finals[-1][:-1] + "5"
|
||||
# 个做量词
|
||||
elif (
|
||||
ge_idx >= 1
|
||||
and (
|
||||
word[ge_idx - 1].isnumeric()
|
||||
or word[ge_idx - 1] in "几有两半多各整每做是"
|
||||
)
|
||||
) or word == "个":
|
||||
finals[ge_idx] = finals[ge_idx][:-1] + "5"
|
||||
else:
|
||||
if (
|
||||
word in self.must_neural_tone_words
|
||||
or word[-2:] in self.must_neural_tone_words
|
||||
):
|
||||
finals[-1] = finals[-1][:-1] + "5"
|
||||
|
||||
word_list = self._split_word(word)
|
||||
finals_list = [finals[: len(word_list[0])], finals[len(word_list[0]) :]]
|
||||
for i, word in enumerate(word_list):
|
||||
# conventional neural in Chinese
|
||||
if (
|
||||
word in self.must_neural_tone_words
|
||||
or word[-2:] in self.must_neural_tone_words
|
||||
):
|
||||
finals_list[i][-1] = finals_list[i][-1][:-1] + "5"
|
||||
finals = sum(finals_list, [])
|
||||
return finals
|
||||
|
||||
def _bu_sandhi(self, word: str, finals: List[str]) -> List[str]:
|
||||
# e.g. 看不懂
|
||||
if len(word) == 3 and word[1] == "不":
|
||||
finals[1] = finals[1][:-1] + "5"
|
||||
else:
|
||||
for i, char in enumerate(word):
|
||||
# "不" before tone4 should be bu2, e.g. 不怕
|
||||
if char == "不" and i + 1 < len(word) and finals[i + 1][-1] == "4":
|
||||
finals[i] = finals[i][:-1] + "2"
|
||||
return finals
|
||||
|
||||
def _yi_sandhi(self, word: str, finals: List[str]) -> List[str]:
|
||||
# "一" in number sequences, e.g. 一零零, 二一零
|
||||
if word.find("一") != -1 and all(
|
||||
[item.isnumeric() for item in word if item != "一"]
|
||||
):
|
||||
return finals
|
||||
# "一" between reduplication words should be yi5, e.g. 看一看
|
||||
elif len(word) == 3 and word[1] == "一" and word[0] == word[-1]:
|
||||
finals[1] = finals[1][:-1] + "5"
|
||||
# when "一" is ordinal word, it should be yi1
|
||||
elif word.startswith("第一"):
|
||||
finals[1] = finals[1][:-1] + "1"
|
||||
else:
|
||||
for i, char in enumerate(word):
|
||||
if char == "一" and i + 1 < len(word):
|
||||
# "一" before tone4 should be yi2, e.g. 一段
|
||||
if finals[i + 1][-1] == "4":
|
||||
finals[i] = finals[i][:-1] + "2"
|
||||
# "一" before non-tone4 should be yi4, e.g. 一天
|
||||
else:
|
||||
# "一" 后面如果是标点,还读一声
|
||||
if word[i + 1] not in self.punc:
|
||||
finals[i] = finals[i][:-1] + "4"
|
||||
return finals
|
||||
|
||||
def _split_word(self, word: str) -> List[str]:
|
||||
word_list = jieba.cut_for_search(word)
|
||||
word_list = sorted(word_list, key=lambda i: len(i), reverse=False)
|
||||
first_subword = word_list[0]
|
||||
first_begin_idx = word.find(first_subword)
|
||||
if first_begin_idx == 0:
|
||||
second_subword = word[len(first_subword) :]
|
||||
new_word_list = [first_subword, second_subword]
|
||||
else:
|
||||
second_subword = word[: -len(first_subword)]
|
||||
new_word_list = [second_subword, first_subword]
|
||||
return new_word_list
|
||||
|
||||
def _three_sandhi(self, word: str, finals: List[str]) -> List[str]:
|
||||
if len(word) == 2 and self._all_tone_three(finals):
|
||||
finals[0] = finals[0][:-1] + "2"
|
||||
elif len(word) == 3:
|
||||
word_list = self._split_word(word)
|
||||
if self._all_tone_three(finals):
|
||||
# disyllabic + monosyllabic, e.g. 蒙古/包
|
||||
if len(word_list[0]) == 2:
|
||||
finals[0] = finals[0][:-1] + "2"
|
||||
finals[1] = finals[1][:-1] + "2"
|
||||
# monosyllabic + disyllabic, e.g. 纸/老虎
|
||||
elif len(word_list[0]) == 1:
|
||||
finals[1] = finals[1][:-1] + "2"
|
||||
else:
|
||||
finals_list = [finals[: len(word_list[0])], finals[len(word_list[0]) :]]
|
||||
if len(finals_list) == 2:
|
||||
for i, sub in enumerate(finals_list):
|
||||
# e.g. 所有/人
|
||||
if self._all_tone_three(sub) and len(sub) == 2:
|
||||
finals_list[i][0] = finals_list[i][0][:-1] + "2"
|
||||
# e.g. 好/喜欢
|
||||
elif (
|
||||
i == 1
|
||||
and not self._all_tone_three(sub)
|
||||
and finals_list[i][0][-1] == "3"
|
||||
and finals_list[0][-1][-1] == "3"
|
||||
):
|
||||
finals_list[0][-1] = finals_list[0][-1][:-1] + "2"
|
||||
finals = sum(finals_list, [])
|
||||
# split idiom into two words who's length is 2
|
||||
elif len(word) == 4:
|
||||
finals_list = [finals[:2], finals[2:]]
|
||||
finals = []
|
||||
for sub in finals_list:
|
||||
if self._all_tone_three(sub):
|
||||
sub[0] = sub[0][:-1] + "2"
|
||||
finals += sub
|
||||
|
||||
return finals
|
||||
|
||||
def _all_tone_three(self, finals: List[str]) -> bool:
|
||||
return all(x[-1] == "3" for x in finals)
|
||||
|
||||
# merge "不" and the word behind it
|
||||
# if don't merge, "不" sometimes appears alone according to jieba, which may occur sandhi error
|
||||
def _merge_bu(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
||||
new_seg = []
|
||||
last_word = ""
|
||||
for word, pos in seg:
|
||||
if last_word == "不":
|
||||
word = last_word + word
|
||||
if word != "不":
|
||||
new_seg.append((word, pos))
|
||||
last_word = word[:]
|
||||
if last_word == "不":
|
||||
new_seg.append((last_word, "d"))
|
||||
last_word = ""
|
||||
return new_seg
|
||||
|
||||
# function 1: merge "一" and reduplication words in it's left and right, e.g. "听","一","听" ->"听一听"
|
||||
# function 2: merge single "一" and the word behind it
|
||||
# if don't merge, "一" sometimes appears alone according to jieba, which may occur sandhi error
|
||||
# e.g.
|
||||
# input seg: [('听', 'v'), ('一', 'm'), ('听', 'v')]
|
||||
# output seg: [['听一听', 'v']]
|
||||
def _merge_yi(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
||||
new_seg = [] * len(seg)
|
||||
# function 1
|
||||
i = 0
|
||||
while i < len(seg):
|
||||
word, pos = seg[i]
|
||||
if (
|
||||
i - 1 >= 0
|
||||
and word == "一"
|
||||
and i + 1 < len(seg)
|
||||
and seg[i - 1][0] == seg[i + 1][0]
|
||||
and seg[i - 1][1] == "v"
|
||||
):
|
||||
new_seg[i - 1][0] = new_seg[i - 1][0] + "一" + new_seg[i - 1][0]
|
||||
i += 2
|
||||
else:
|
||||
if (
|
||||
i - 2 >= 0
|
||||
and seg[i - 1][0] == "一"
|
||||
and seg[i - 2][0] == word
|
||||
and pos == "v"
|
||||
):
|
||||
continue
|
||||
else:
|
||||
new_seg.append([word, pos])
|
||||
i += 1
|
||||
seg = [i for i in new_seg if len(i) > 0]
|
||||
new_seg = []
|
||||
# function 2
|
||||
for i, (word, pos) in enumerate(seg):
|
||||
if new_seg and new_seg[-1][0] == "一":
|
||||
new_seg[-1][0] = new_seg[-1][0] + word
|
||||
else:
|
||||
new_seg.append([word, pos])
|
||||
return new_seg
|
||||
|
||||
# the first and the second words are all_tone_three
|
||||
def _merge_continuous_three_tones(
|
||||
self, seg: List[Tuple[str, str]]
|
||||
) -> List[Tuple[str, str]]:
|
||||
new_seg = []
|
||||
sub_finals_list = [
|
||||
lazy_pinyin(word, neutral_tone_with_five=True, style=Style.FINALS_TONE3)
|
||||
for (word, pos) in seg
|
||||
]
|
||||
assert len(sub_finals_list) == len(seg)
|
||||
merge_last = [False] * len(seg)
|
||||
for i, (word, pos) in enumerate(seg):
|
||||
if (
|
||||
i - 1 >= 0
|
||||
and self._all_tone_three(sub_finals_list[i - 1])
|
||||
and self._all_tone_three(sub_finals_list[i])
|
||||
and not merge_last[i - 1]
|
||||
):
|
||||
# if the last word is reduplication, not merge, because reduplication need to be _neural_sandhi
|
||||
if (
|
||||
not self._is_reduplication(seg[i - 1][0])
|
||||
and len(seg[i - 1][0]) + len(seg[i][0]) <= 3
|
||||
):
|
||||
new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
|
||||
merge_last[i] = True
|
||||
else:
|
||||
new_seg.append([word, pos])
|
||||
else:
|
||||
new_seg.append([word, pos])
|
||||
|
||||
return new_seg
|
||||
|
||||
def _is_reduplication(self, word: str) -> bool:
|
||||
return len(word) == 2 and word[0] == word[1]
|
||||
|
||||
# the last char of first word and the first char of second word is tone_three
|
||||
def _merge_continuous_three_tones_2(
|
||||
self, seg: List[Tuple[str, str]]
|
||||
) -> List[Tuple[str, str]]:
|
||||
new_seg = []
|
||||
sub_finals_list = [
|
||||
lazy_pinyin(word, neutral_tone_with_five=True, style=Style.FINALS_TONE3)
|
||||
for (word, pos) in seg
|
||||
]
|
||||
assert len(sub_finals_list) == len(seg)
|
||||
merge_last = [False] * len(seg)
|
||||
for i, (word, pos) in enumerate(seg):
|
||||
if (
|
||||
i - 1 >= 0
|
||||
and sub_finals_list[i - 1][-1][-1] == "3"
|
||||
and sub_finals_list[i][0][-1] == "3"
|
||||
and not merge_last[i - 1]
|
||||
):
|
||||
# if the last word is reduplication, not merge, because reduplication need to be _neural_sandhi
|
||||
if (
|
||||
not self._is_reduplication(seg[i - 1][0])
|
||||
and len(seg[i - 1][0]) + len(seg[i][0]) <= 3
|
||||
):
|
||||
new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
|
||||
merge_last[i] = True
|
||||
else:
|
||||
new_seg.append([word, pos])
|
||||
else:
|
||||
new_seg.append([word, pos])
|
||||
return new_seg
|
||||
|
||||
def _merge_er(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
||||
new_seg = []
|
||||
for i, (word, pos) in enumerate(seg):
|
||||
if i - 1 >= 0 and word == "儿" and seg[i - 1][0] != "#":
|
||||
new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
|
||||
else:
|
||||
new_seg.append([word, pos])
|
||||
return new_seg
|
||||
|
||||
def _merge_reduplication(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
||||
new_seg = []
|
||||
for i, (word, pos) in enumerate(seg):
|
||||
if new_seg and word == new_seg[-1][0]:
|
||||
new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
|
||||
else:
|
||||
new_seg.append([word, pos])
|
||||
return new_seg
|
||||
|
||||
def pre_merge_for_modify(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
||||
seg = self._merge_bu(seg)
|
||||
try:
|
||||
seg = self._merge_yi(seg)
|
||||
except:
|
||||
print("_merge_yi failed")
|
||||
seg = self._merge_reduplication(seg)
|
||||
seg = self._merge_continuous_three_tones(seg)
|
||||
seg = self._merge_continuous_three_tones_2(seg)
|
||||
seg = self._merge_er(seg)
|
||||
return seg
|
||||
|
||||
def modified_tone(self, word: str, pos: str, finals: List[str]) -> List[str]:
|
||||
finals = self._bu_sandhi(word, finals)
|
||||
finals = self._yi_sandhi(word, finals)
|
||||
finals = self._neural_sandhi(word, pos, finals)
|
||||
finals = self._three_sandhi(word, finals)
|
||||
return finals
|
|
@ -0,0 +1,3 @@
|
|||
"""
|
||||
工具包
|
||||
"""
|
|
@ -0,0 +1,197 @@
|
|||
import regex as re
|
||||
|
||||
try:
|
||||
from ..config import config
|
||||
|
||||
LANGUAGE_IDENTIFICATION_LIBRARY = (
|
||||
config.webui_config.language_identification_library
|
||||
)
|
||||
except:
|
||||
LANGUAGE_IDENTIFICATION_LIBRARY = "langid"
|
||||
|
||||
module = LANGUAGE_IDENTIFICATION_LIBRARY.lower()
|
||||
|
||||
langid_languages = [
|
||||
"af",
|
||||
"am",
|
||||
"an",
|
||||
"ar",
|
||||
"as",
|
||||
"az",
|
||||
"be",
|
||||
"bg",
|
||||
"bn",
|
||||
"br",
|
||||
"bs",
|
||||
"ca",
|
||||
"cs",
|
||||
"cy",
|
||||
"da",
|
||||
"de",
|
||||
"dz",
|
||||
"el",
|
||||
"en",
|
||||
"eo",
|
||||
"es",
|
||||
"et",
|
||||
"eu",
|
||||
"fa",
|
||||
"fi",
|
||||
"fo",
|
||||
"fr",
|
||||
"ga",
|
||||
"gl",
|
||||
"gu",
|
||||
"he",
|
||||
"hi",
|
||||
"hr",
|
||||
"ht",
|
||||
"hu",
|
||||
"hy",
|
||||
"id",
|
||||
"is",
|
||||
"it",
|
||||
"ja",
|
||||
"jv",
|
||||
"ka",
|
||||
"kk",
|
||||
"km",
|
||||
"kn",
|
||||
"ko",
|
||||
"ku",
|
||||
"ky",
|
||||
"la",
|
||||
"lb",
|
||||
"lo",
|
||||
"lt",
|
||||
"lv",
|
||||
"mg",
|
||||
"mk",
|
||||
"ml",
|
||||
"mn",
|
||||
"mr",
|
||||
"ms",
|
||||
"mt",
|
||||
"nb",
|
||||
"ne",
|
||||
"nl",
|
||||
"nn",
|
||||
"no",
|
||||
"oc",
|
||||
"or",
|
||||
"pa",
|
||||
"pl",
|
||||
"ps",
|
||||
"pt",
|
||||
"qu",
|
||||
"ro",
|
||||
"ru",
|
||||
"rw",
|
||||
"se",
|
||||
"si",
|
||||
"sk",
|
||||
"sl",
|
||||
"sq",
|
||||
"sr",
|
||||
"sv",
|
||||
"sw",
|
||||
"ta",
|
||||
"te",
|
||||
"th",
|
||||
"tl",
|
||||
"tr",
|
||||
"ug",
|
||||
"uk",
|
||||
"ur",
|
||||
"vi",
|
||||
"vo",
|
||||
"wa",
|
||||
"xh",
|
||||
"zh",
|
||||
"zu",
|
||||
]
|
||||
|
||||
|
||||
def classify_language(text: str, target_languages: list = None) -> str:
|
||||
if module == "fastlid" or module == "fasttext":
|
||||
from fastlid import fastlid, supported_langs
|
||||
|
||||
classifier = fastlid
|
||||
if target_languages != None:
|
||||
target_languages = [
|
||||
lang for lang in target_languages if lang in supported_langs
|
||||
]
|
||||
fastlid.set_languages = target_languages
|
||||
elif module == "langid":
|
||||
import langid
|
||||
|
||||
classifier = langid.classify
|
||||
if target_languages != None:
|
||||
target_languages = [
|
||||
lang for lang in target_languages if lang in langid_languages
|
||||
]
|
||||
langid.set_languages(target_languages)
|
||||
else:
|
||||
raise ValueError(f"Wrong module {module}")
|
||||
|
||||
lang = classifier(text)[0]
|
||||
|
||||
return lang
|
||||
|
||||
|
||||
def classify_zh_ja(text: str) -> str:
|
||||
for idx, char in enumerate(text):
|
||||
unicode_val = ord(char)
|
||||
|
||||
# 检测日语字符
|
||||
if 0x3040 <= unicode_val <= 0x309F or 0x30A0 <= unicode_val <= 0x30FF:
|
||||
return "ja"
|
||||
|
||||
# 检测汉字字符
|
||||
if 0x4E00 <= unicode_val <= 0x9FFF:
|
||||
# 检查周围的字符
|
||||
next_char = text[idx + 1] if idx + 1 < len(text) else None
|
||||
|
||||
if next_char and (
|
||||
0x3040 <= ord(next_char) <= 0x309F or 0x30A0 <= ord(next_char) <= 0x30FF
|
||||
):
|
||||
return "ja"
|
||||
|
||||
return "zh"
|
||||
|
||||
|
||||
def split_alpha_nonalpha(text, mode=1):
|
||||
if mode == 1:
|
||||
pattern = r"(?<=[\u4e00-\u9fff\u3040-\u30FF\d\s])(?=[\p{Latin}])|(?<=[\p{Latin}\s])(?=[\u4e00-\u9fff\u3040-\u30FF\d])"
|
||||
elif mode == 2:
|
||||
pattern = r"(?<=[\u4e00-\u9fff\u3040-\u30FF\s])(?=[\p{Latin}\d])|(?<=[\p{Latin}\d\s])(?=[\u4e00-\u9fff\u3040-\u30FF])"
|
||||
else:
|
||||
raise ValueError("Invalid mode. Supported modes are 1 and 2.")
|
||||
|
||||
return re.split(pattern, text)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
text = "这是一个测试文本"
|
||||
print(classify_language(text))
|
||||
print(classify_zh_ja(text)) # "zh"
|
||||
|
||||
text = "これはテストテキストです"
|
||||
print(classify_language(text))
|
||||
print(classify_zh_ja(text)) # "ja"
|
||||
|
||||
text = "vits和Bert-VITS2是tts模型。花费3days.花费3天。Take 3 days"
|
||||
|
||||
print(split_alpha_nonalpha(text, mode=1))
|
||||
# output: ['vits', '和', 'Bert-VITS', '2是', 'tts', '模型。花费3', 'days.花费3天。Take 3 days']
|
||||
|
||||
print(split_alpha_nonalpha(text, mode=2))
|
||||
# output: ['vits', '和', 'Bert-VITS2', '是', 'tts', '模型。花费', '3days.花费', '3', '天。Take 3 days']
|
||||
|
||||
text = "vits 和 Bert-VITS2 是 tts 模型。花费3days.花费3天。Take 3 days"
|
||||
print(split_alpha_nonalpha(text, mode=1))
|
||||
# output: ['vits ', '和 ', 'Bert-VITS', '2 ', '是 ', 'tts ', '模型。花费3', 'days.花费3天。Take ', '3 ', 'days']
|
||||
|
||||
text = "vits 和 Bert-VITS2 是 tts 模型。花费3days.花费3天。Take 3 days"
|
||||
print(split_alpha_nonalpha(text, mode=2))
|
||||
# output: ['vits ', '和 ', 'Bert-VITS2 ', '是 ', 'tts ', '模型。花费', '3days.花费', '3', '天。Take ', '3 ', 'days']
|
|
@ -0,0 +1,17 @@
|
|||
"""
|
||||
logger封装
|
||||
"""
|
||||
|
||||
from loguru import logger
|
||||
import sys
|
||||
|
||||
|
||||
# 移除所有默认的处理器
|
||||
logger.remove()
|
||||
|
||||
# 自定义格式并添加到标准输出
|
||||
log_format = (
|
||||
"<g>{time:MM-DD HH:mm:ss}</g> <lvl>{level:<9}</lvl>| {file}:{line} | {message}"
|
||||
)
|
||||
|
||||
logger.add(sys.stdout, format=log_format, backtrace=True, diagnose=True)
|
|
@ -0,0 +1,173 @@
|
|||
import logging
|
||||
|
||||
import regex as re
|
||||
|
||||
from ..tools.classify_language import classify_language, split_alpha_nonalpha
|
||||
|
||||
|
||||
def check_is_none(item) -> bool:
|
||||
"""none -> True, not none -> False"""
|
||||
return (
|
||||
item is None
|
||||
or (isinstance(item, str) and str(item).isspace())
|
||||
or str(item) == ""
|
||||
)
|
||||
|
||||
|
||||
def markup_language(text: str, target_languages: list = None) -> str:
|
||||
pattern = (
|
||||
r"[\!\"\#\$\%\&\'\(\)\*\+\,\-\.\/\:\;\<\>\=\?\@\[\]\{\}\\\\\^\_\`"
|
||||
r"\!?。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」"
|
||||
r"『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘\'\‛\“\”\„\‟…‧﹏.]+"
|
||||
)
|
||||
sentences = re.split(pattern, text)
|
||||
|
||||
pre_lang = ""
|
||||
p = 0
|
||||
|
||||
if target_languages is not None:
|
||||
sorted_target_languages = sorted(target_languages)
|
||||
if sorted_target_languages in [["en", "zh"], ["en", "ja"], ["en", "ja", "zh"]]:
|
||||
new_sentences = []
|
||||
for sentence in sentences:
|
||||
new_sentences.extend(split_alpha_nonalpha(sentence))
|
||||
sentences = new_sentences
|
||||
|
||||
for sentence in sentences:
|
||||
if check_is_none(sentence):
|
||||
continue
|
||||
|
||||
lang = classify_language(sentence, target_languages)
|
||||
|
||||
if pre_lang == "":
|
||||
text = text[:p] + text[p:].replace(
|
||||
sentence, f"[{lang.upper()}]{sentence}", 1
|
||||
)
|
||||
p += len(f"[{lang.upper()}]")
|
||||
elif pre_lang != lang:
|
||||
text = text[:p] + text[p:].replace(
|
||||
sentence, f"[{pre_lang.upper()}][{lang.upper()}]{sentence}", 1
|
||||
)
|
||||
p += len(f"[{pre_lang.upper()}][{lang.upper()}]")
|
||||
pre_lang = lang
|
||||
p += text[p:].index(sentence) + len(sentence)
|
||||
text += f"[{pre_lang.upper()}]"
|
||||
|
||||
return text
|
||||
|
||||
|
||||
def split_by_language(text: str, target_languages: list = None) -> list:
|
||||
pattern = (
|
||||
r"[\!\"\#\$\%\&\'\(\)\*\+\,\-\.\/\:\;\<\>\=\?\@\[\]\{\}\\\\\^\_\`"
|
||||
r"\!?\。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」"
|
||||
r"『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘\'\‛\“\”\„\‟…‧﹏.]+"
|
||||
)
|
||||
sentences = re.split(pattern, text)
|
||||
|
||||
pre_lang = ""
|
||||
start = 0
|
||||
end = 0
|
||||
sentences_list = []
|
||||
|
||||
if target_languages is not None:
|
||||
sorted_target_languages = sorted(target_languages)
|
||||
if sorted_target_languages in [["en", "zh"], ["en", "ja"], ["en", "ja", "zh"]]:
|
||||
new_sentences = []
|
||||
for sentence in sentences:
|
||||
new_sentences.extend(split_alpha_nonalpha(sentence))
|
||||
sentences = new_sentences
|
||||
|
||||
for sentence in sentences:
|
||||
if check_is_none(sentence):
|
||||
continue
|
||||
|
||||
lang = classify_language(sentence, target_languages)
|
||||
|
||||
end += text[end:].index(sentence)
|
||||
if pre_lang != "" and pre_lang != lang:
|
||||
sentences_list.append((text[start:end], pre_lang))
|
||||
start = end
|
||||
end += len(sentence)
|
||||
pre_lang = lang
|
||||
sentences_list.append((text[start:], pre_lang))
|
||||
|
||||
return sentences_list
|
||||
|
||||
|
||||
def sentence_split(text: str, max: int) -> list:
|
||||
pattern = r"[!(),—+\-.:;??。,、;:]+"
|
||||
sentences = re.split(pattern, text)
|
||||
discarded_chars = re.findall(pattern, text)
|
||||
|
||||
sentences_list, count, p = [], 0, 0
|
||||
|
||||
# 按被分割的符号遍历
|
||||
for i, discarded_chars in enumerate(discarded_chars):
|
||||
count += len(sentences[i]) + len(discarded_chars)
|
||||
if count >= max:
|
||||
sentences_list.append(text[p : p + count].strip())
|
||||
p += count
|
||||
count = 0
|
||||
|
||||
# 加入最后剩余的文本
|
||||
if p < len(text):
|
||||
sentences_list.append(text[p:])
|
||||
|
||||
return sentences_list
|
||||
|
||||
|
||||
def sentence_split_and_markup(text, max=50, lang="auto", speaker_lang=None):
|
||||
# 如果该speaker只支持一种语言
|
||||
if speaker_lang is not None and len(speaker_lang) == 1:
|
||||
if lang.upper() not in ["AUTO", "MIX"] and lang.lower() != speaker_lang[0]:
|
||||
logging.debug(
|
||||
f'lang "{lang}" is not in speaker_lang {speaker_lang},automatically set lang={speaker_lang[0]}'
|
||||
)
|
||||
lang = speaker_lang[0]
|
||||
|
||||
sentences_list = []
|
||||
if lang.upper() != "MIX":
|
||||
if max <= 0:
|
||||
sentences_list.append(
|
||||
markup_language(text, speaker_lang)
|
||||
if lang.upper() == "AUTO"
|
||||
else f"[{lang.upper()}]{text}[{lang.upper()}]"
|
||||
)
|
||||
else:
|
||||
for i in sentence_split(text, max):
|
||||
if check_is_none(i):
|
||||
continue
|
||||
sentences_list.append(
|
||||
markup_language(i, speaker_lang)
|
||||
if lang.upper() == "AUTO"
|
||||
else f"[{lang.upper()}]{i}[{lang.upper()}]"
|
||||
)
|
||||
else:
|
||||
sentences_list.append(text)
|
||||
|
||||
for i in sentences_list:
|
||||
logging.debug(i)
|
||||
|
||||
return sentences_list
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
text = "这几天心里颇不宁静。今晚在院子里坐着乘凉,忽然想起日日走过的荷塘,在这满月的光里,总该另有一番样子吧。月亮渐渐地升高了,墙外马路上孩子们的欢笑,已经听不见了;妻在屋里拍着闰儿,迷迷糊糊地哼着眠歌。我悄悄地披了大衫,带上门出去。"
|
||||
print(markup_language(text, target_languages=None))
|
||||
print(sentence_split(text, max=50))
|
||||
print(sentence_split_and_markup(text, max=50, lang="auto", speaker_lang=None))
|
||||
|
||||
text = "你好,这是一段用来测试自动标注的文本。こんにちは,これは自動ラベリングのテスト用テキストです.Hello, this is a piece of text to test autotagging.你好!今天我们要介绍VITS项目,其重点是使用了GAN Duration predictor和transformer flow,并且接入了Bert模型来提升韵律。Bert embedding会在稍后介绍。"
|
||||
print(split_by_language(text, ["zh", "ja", "en"]))
|
||||
|
||||
text = "vits和Bert-VITS2是tts模型。花费3days.花费3天。Take 3 days"
|
||||
|
||||
print(split_by_language(text, ["zh", "ja", "en"]))
|
||||
# output: [('vits', 'en'), ('和', 'ja'), ('Bert-VITS', 'en'), ('2是', 'zh'), ('tts', 'en'), ('模型。花费3', 'zh'), ('days.', 'en'), ('花费3天。', 'zh'), ('Take 3 days', 'en')]
|
||||
|
||||
print(split_by_language(text, ["zh", "en"]))
|
||||
# output: [('vits', 'en'), ('和', 'zh'), ('Bert-VITS', 'en'), ('2是', 'zh'), ('tts', 'en'), ('模型。花费3', 'zh'), ('days.', 'en'), ('花费3天。', 'zh'), ('Take 3 days', 'en')]
|
||||
|
||||
text = "vits 和 Bert-VITS2 是 tts 模型。花费 3 days. 花费 3天。Take 3 days"
|
||||
print(split_by_language(text, ["zh", "en"]))
|
||||
# output: [('vits ', 'en'), ('和 ', 'zh'), ('Bert-VITS2 ', 'en'), ('是 ', 'zh'), ('tts ', 'en'), ('模型。花费 ', 'zh'), ('3 days. ', 'en'), ('花费 3天。', 'zh'), ('Take 3 days', 'en')]
|
|
@ -0,0 +1,62 @@
|
|||
"""
|
||||
翻译api
|
||||
"""
|
||||
|
||||
from ..config import config
|
||||
|
||||
import random
|
||||
import hashlib
|
||||
import requests
|
||||
|
||||
|
||||
def translate(Sentence: str, to_Language: str = "jp", from_Language: str = ""):
|
||||
"""
|
||||
:param Sentence: 待翻译语句
|
||||
:param from_Language: 待翻译语句语言
|
||||
:param to_Language: 目标语言
|
||||
:return: 翻译后语句 出错时返回None
|
||||
|
||||
常见语言代码:中文 zh 英语 en 日语 jp
|
||||
"""
|
||||
appid = config.translate_config.app_key
|
||||
key = config.translate_config.secret_key
|
||||
if appid == "" or key == "":
|
||||
return "请开发者在config.yml中配置app_key与secret_key"
|
||||
url = "https://fanyi-api.baidu.com/api/trans/vip/translate"
|
||||
texts = Sentence.splitlines()
|
||||
outTexts = []
|
||||
for t in texts:
|
||||
if t != "":
|
||||
# 签名计算 参考文档 https://api.fanyi.baidu.com/product/113
|
||||
salt = str(random.randint(1, 100000))
|
||||
signString = appid + t + salt + key
|
||||
hs = hashlib.md5()
|
||||
hs.update(signString.encode("utf-8"))
|
||||
signString = hs.hexdigest()
|
||||
if from_Language == "":
|
||||
from_Language = "auto"
|
||||
headers = {"Content-Type": "application/x-www-form-urlencoded"}
|
||||
payload = {
|
||||
"q": t,
|
||||
"from": from_Language,
|
||||
"to": to_Language,
|
||||
"appid": appid,
|
||||
"salt": salt,
|
||||
"sign": signString,
|
||||
}
|
||||
# 发送请求
|
||||
try:
|
||||
response = requests.post(
|
||||
url=url, data=payload, headers=headers, timeout=3
|
||||
)
|
||||
response = response.json()
|
||||
if "trans_result" in response.keys():
|
||||
result = response["trans_result"][0]
|
||||
if "dst" in result.keys():
|
||||
dst = result["dst"]
|
||||
outTexts.append(dst)
|
||||
except Exception:
|
||||
return Sentence
|
||||
else:
|
||||
outTexts.append(t)
|
||||
return "\n".join(outTexts)
|
|
@ -0,0 +1,209 @@
|
|||
import torch
|
||||
from torch.nn import functional as F
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
DEFAULT_MIN_BIN_WIDTH = 1e-3
|
||||
DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
||||
DEFAULT_MIN_DERIVATIVE = 1e-3
|
||||
|
||||
|
||||
def piecewise_rational_quadratic_transform(
|
||||
inputs,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=False,
|
||||
tails=None,
|
||||
tail_bound=1.0,
|
||||
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
||||
):
|
||||
if tails is None:
|
||||
spline_fn = rational_quadratic_spline
|
||||
spline_kwargs = {}
|
||||
else:
|
||||
spline_fn = unconstrained_rational_quadratic_spline
|
||||
spline_kwargs = {"tails": tails, "tail_bound": tail_bound}
|
||||
|
||||
outputs, logabsdet = spline_fn(
|
||||
inputs=inputs,
|
||||
unnormalized_widths=unnormalized_widths,
|
||||
unnormalized_heights=unnormalized_heights,
|
||||
unnormalized_derivatives=unnormalized_derivatives,
|
||||
inverse=inverse,
|
||||
min_bin_width=min_bin_width,
|
||||
min_bin_height=min_bin_height,
|
||||
min_derivative=min_derivative,
|
||||
**spline_kwargs
|
||||
)
|
||||
return outputs, logabsdet
|
||||
|
||||
|
||||
def searchsorted(bin_locations, inputs, eps=1e-6):
|
||||
bin_locations[..., -1] += eps
|
||||
return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
|
||||
|
||||
|
||||
def unconstrained_rational_quadratic_spline(
|
||||
inputs,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=False,
|
||||
tails="linear",
|
||||
tail_bound=1.0,
|
||||
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
||||
):
|
||||
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
|
||||
outside_interval_mask = ~inside_interval_mask
|
||||
|
||||
outputs = torch.zeros_like(inputs)
|
||||
logabsdet = torch.zeros_like(inputs)
|
||||
|
||||
if tails == "linear":
|
||||
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
|
||||
constant = np.log(np.exp(1 - min_derivative) - 1)
|
||||
unnormalized_derivatives[..., 0] = constant
|
||||
unnormalized_derivatives[..., -1] = constant
|
||||
|
||||
outputs[outside_interval_mask] = inputs[outside_interval_mask]
|
||||
logabsdet[outside_interval_mask] = 0
|
||||
else:
|
||||
raise RuntimeError("{} tails are not implemented.".format(tails))
|
||||
|
||||
(
|
||||
outputs[inside_interval_mask],
|
||||
logabsdet[inside_interval_mask],
|
||||
) = rational_quadratic_spline(
|
||||
inputs=inputs[inside_interval_mask],
|
||||
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
|
||||
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
|
||||
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
|
||||
inverse=inverse,
|
||||
left=-tail_bound,
|
||||
right=tail_bound,
|
||||
bottom=-tail_bound,
|
||||
top=tail_bound,
|
||||
min_bin_width=min_bin_width,
|
||||
min_bin_height=min_bin_height,
|
||||
min_derivative=min_derivative,
|
||||
)
|
||||
|
||||
return outputs, logabsdet
|
||||
|
||||
|
||||
def rational_quadratic_spline(
|
||||
inputs,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=False,
|
||||
left=0.0,
|
||||
right=1.0,
|
||||
bottom=0.0,
|
||||
top=1.0,
|
||||
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
||||
):
|
||||
if torch.min(inputs) < left or torch.max(inputs) > right:
|
||||
raise ValueError("Input to a transform is not within its domain")
|
||||
|
||||
num_bins = unnormalized_widths.shape[-1]
|
||||
|
||||
if min_bin_width * num_bins > 1.0:
|
||||
raise ValueError("Minimal bin width too large for the number of bins")
|
||||
if min_bin_height * num_bins > 1.0:
|
||||
raise ValueError("Minimal bin height too large for the number of bins")
|
||||
|
||||
widths = F.softmax(unnormalized_widths, dim=-1)
|
||||
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
|
||||
cumwidths = torch.cumsum(widths, dim=-1)
|
||||
cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0)
|
||||
cumwidths = (right - left) * cumwidths + left
|
||||
cumwidths[..., 0] = left
|
||||
cumwidths[..., -1] = right
|
||||
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
|
||||
|
||||
derivatives = min_derivative + F.softplus(unnormalized_derivatives)
|
||||
|
||||
heights = F.softmax(unnormalized_heights, dim=-1)
|
||||
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
|
||||
cumheights = torch.cumsum(heights, dim=-1)
|
||||
cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0)
|
||||
cumheights = (top - bottom) * cumheights + bottom
|
||||
cumheights[..., 0] = bottom
|
||||
cumheights[..., -1] = top
|
||||
heights = cumheights[..., 1:] - cumheights[..., :-1]
|
||||
|
||||
if inverse:
|
||||
bin_idx = searchsorted(cumheights, inputs)[..., None]
|
||||
else:
|
||||
bin_idx = searchsorted(cumwidths, inputs)[..., None]
|
||||
|
||||
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
|
||||
input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
|
||||
|
||||
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
|
||||
delta = heights / widths
|
||||
input_delta = delta.gather(-1, bin_idx)[..., 0]
|
||||
|
||||
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
|
||||
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
|
||||
|
||||
input_heights = heights.gather(-1, bin_idx)[..., 0]
|
||||
|
||||
if inverse:
|
||||
a = (inputs - input_cumheights) * (
|
||||
input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
||||
) + input_heights * (input_delta - input_derivatives)
|
||||
b = input_heights * input_derivatives - (inputs - input_cumheights) * (
|
||||
input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
||||
)
|
||||
c = -input_delta * (inputs - input_cumheights)
|
||||
|
||||
discriminant = b.pow(2) - 4 * a * c
|
||||
assert (discriminant >= 0).all()
|
||||
|
||||
root = (2 * c) / (-b - torch.sqrt(discriminant))
|
||||
outputs = root * input_bin_widths + input_cumwidths
|
||||
|
||||
theta_one_minus_theta = root * (1 - root)
|
||||
denominator = input_delta + (
|
||||
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
||||
* theta_one_minus_theta
|
||||
)
|
||||
derivative_numerator = input_delta.pow(2) * (
|
||||
input_derivatives_plus_one * root.pow(2)
|
||||
+ 2 * input_delta * theta_one_minus_theta
|
||||
+ input_derivatives * (1 - root).pow(2)
|
||||
)
|
||||
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
||||
|
||||
return outputs, -logabsdet
|
||||
else:
|
||||
theta = (inputs - input_cumwidths) / input_bin_widths
|
||||
theta_one_minus_theta = theta * (1 - theta)
|
||||
|
||||
numerator = input_heights * (
|
||||
input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta
|
||||
)
|
||||
denominator = input_delta + (
|
||||
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
||||
* theta_one_minus_theta
|
||||
)
|
||||
outputs = input_cumheights + numerator / denominator
|
||||
|
||||
derivative_numerator = input_delta.pow(2) * (
|
||||
input_derivatives_plus_one * theta.pow(2)
|
||||
+ 2 * input_delta * theta_one_minus_theta
|
||||
+ input_derivatives * (1 - theta).pow(2)
|
||||
)
|
||||
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
||||
|
||||
return outputs, logabsdet
|
|
@ -0,0 +1,460 @@
|
|||
import os
|
||||
import glob
|
||||
import argparse
|
||||
import logging
|
||||
import json
|
||||
import shutil
|
||||
import subprocess
|
||||
import numpy as np
|
||||
from huggingface_hub import hf_hub_download
|
||||
from scipy.io.wavfile import read
|
||||
import torch
|
||||
import re
|
||||
|
||||
MATPLOTLIB_FLAG = False
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def download_emo_models(mirror, repo_id, model_name):
|
||||
if mirror == "openi":
|
||||
import openi
|
||||
|
||||
openi.model.download_model(
|
||||
"Stardust_minus/Bert-VITS2",
|
||||
repo_id.split("/")[-1],
|
||||
"./emotional",
|
||||
)
|
||||
else:
|
||||
hf_hub_download(
|
||||
repo_id,
|
||||
"pytorch_model.bin",
|
||||
local_dir=model_name,
|
||||
local_dir_use_symlinks=False,
|
||||
)
|
||||
|
||||
|
||||
def download_checkpoint(
|
||||
dir_path, repo_config, token=None, regex="G_*.pth", mirror="openi"
|
||||
):
|
||||
repo_id = repo_config["repo_id"]
|
||||
f_list = glob.glob(os.path.join(dir_path, regex))
|
||||
if f_list:
|
||||
print("Use existed model, skip downloading.")
|
||||
return
|
||||
if mirror.lower() == "openi":
|
||||
import openi
|
||||
|
||||
kwargs = {"token": token} if token else {}
|
||||
openi.login(**kwargs)
|
||||
|
||||
model_image = repo_config["model_image"]
|
||||
openi.model.download_model(repo_id, model_image, dir_path)
|
||||
|
||||
fs = glob.glob(os.path.join(dir_path, model_image, "*.pth"))
|
||||
for file in fs:
|
||||
shutil.move(file, dir_path)
|
||||
shutil.rmtree(os.path.join(dir_path, model_image))
|
||||
else:
|
||||
for file in ["DUR_0.pth", "D_0.pth", "G_0.pth"]:
|
||||
hf_hub_download(
|
||||
repo_id, file, local_dir=dir_path, local_dir_use_symlinks=False
|
||||
)
|
||||
|
||||
|
||||
def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False):
|
||||
assert os.path.isfile(checkpoint_path)
|
||||
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
|
||||
iteration = checkpoint_dict["iteration"]
|
||||
learning_rate = checkpoint_dict["learning_rate"]
|
||||
if (
|
||||
optimizer is not None
|
||||
and not skip_optimizer
|
||||
and checkpoint_dict["optimizer"] is not None
|
||||
):
|
||||
optimizer.load_state_dict(checkpoint_dict["optimizer"])
|
||||
elif optimizer is None and not skip_optimizer:
|
||||
# else: Disable this line if Infer and resume checkpoint,then enable the line upper
|
||||
new_opt_dict = optimizer.state_dict()
|
||||
new_opt_dict_params = new_opt_dict["param_groups"][0]["params"]
|
||||
new_opt_dict["param_groups"] = checkpoint_dict["optimizer"]["param_groups"]
|
||||
new_opt_dict["param_groups"][0]["params"] = new_opt_dict_params
|
||||
optimizer.load_state_dict(new_opt_dict)
|
||||
|
||||
saved_state_dict = checkpoint_dict["model"]
|
||||
if hasattr(model, "module"):
|
||||
state_dict = model.module.state_dict()
|
||||
else:
|
||||
state_dict = model.state_dict()
|
||||
|
||||
new_state_dict = {}
|
||||
for k, v in state_dict.items():
|
||||
try:
|
||||
# assert "emb_g" not in k
|
||||
new_state_dict[k] = saved_state_dict[k]
|
||||
assert saved_state_dict[k].shape == v.shape, (
|
||||
saved_state_dict[k].shape,
|
||||
v.shape,
|
||||
)
|
||||
except:
|
||||
# For upgrading from the old version
|
||||
if "ja_bert_proj" in k:
|
||||
v = torch.zeros_like(v)
|
||||
logger.warn(
|
||||
f"Seems you are using the old version of the model, the {k} is automatically set to zero for backward compatibility"
|
||||
)
|
||||
else:
|
||||
logger.error(f"{k} is not in the checkpoint")
|
||||
|
||||
new_state_dict[k] = v
|
||||
|
||||
if hasattr(model, "module"):
|
||||
model.module.load_state_dict(new_state_dict, strict=False)
|
||||
else:
|
||||
model.load_state_dict(new_state_dict, strict=False)
|
||||
|
||||
logger.info(
|
||||
"Loaded checkpoint '{}' (iteration {})".format(checkpoint_path, iteration)
|
||||
)
|
||||
|
||||
return model, optimizer, learning_rate, iteration
|
||||
|
||||
|
||||
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
|
||||
logger.info(
|
||||
"Saving model and optimizer state at iteration {} to {}".format(
|
||||
iteration, checkpoint_path
|
||||
)
|
||||
)
|
||||
if hasattr(model, "module"):
|
||||
state_dict = model.module.state_dict()
|
||||
else:
|
||||
state_dict = model.state_dict()
|
||||
torch.save(
|
||||
{
|
||||
"model": state_dict,
|
||||
"iteration": iteration,
|
||||
"optimizer": optimizer.state_dict(),
|
||||
"learning_rate": learning_rate,
|
||||
},
|
||||
checkpoint_path,
|
||||
)
|
||||
|
||||
|
||||
def summarize(
|
||||
writer,
|
||||
global_step,
|
||||
scalars={},
|
||||
histograms={},
|
||||
images={},
|
||||
audios={},
|
||||
audio_sampling_rate=22050,
|
||||
):
|
||||
for k, v in scalars.items():
|
||||
writer.add_scalar(k, v, global_step)
|
||||
for k, v in histograms.items():
|
||||
writer.add_histogram(k, v, global_step)
|
||||
for k, v in images.items():
|
||||
writer.add_image(k, v, global_step, dataformats="HWC")
|
||||
for k, v in audios.items():
|
||||
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
||||
|
||||
|
||||
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
||||
f_list = glob.glob(os.path.join(dir_path, regex))
|
||||
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
||||
x = f_list[-1]
|
||||
return x
|
||||
|
||||
|
||||
def plot_spectrogram_to_numpy(spectrogram):
|
||||
global MATPLOTLIB_FLAG
|
||||
if not MATPLOTLIB_FLAG:
|
||||
import matplotlib
|
||||
|
||||
matplotlib.use("Agg")
|
||||
MATPLOTLIB_FLAG = True
|
||||
mpl_logger = logging.getLogger("matplotlib")
|
||||
mpl_logger.setLevel(logging.WARNING)
|
||||
import matplotlib.pylab as plt
|
||||
import numpy as np
|
||||
|
||||
fig, ax = plt.subplots(figsize=(10, 2))
|
||||
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
|
||||
plt.colorbar(im, ax=ax)
|
||||
plt.xlabel("Frames")
|
||||
plt.ylabel("Channels")
|
||||
plt.tight_layout()
|
||||
|
||||
fig.canvas.draw()
|
||||
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
||||
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
||||
plt.close()
|
||||
return data
|
||||
|
||||
|
||||
def plot_alignment_to_numpy(alignment, info=None):
|
||||
global MATPLOTLIB_FLAG
|
||||
if not MATPLOTLIB_FLAG:
|
||||
import matplotlib
|
||||
|
||||
matplotlib.use("Agg")
|
||||
MATPLOTLIB_FLAG = True
|
||||
mpl_logger = logging.getLogger("matplotlib")
|
||||
mpl_logger.setLevel(logging.WARNING)
|
||||
import matplotlib.pylab as plt
|
||||
import numpy as np
|
||||
|
||||
fig, ax = plt.subplots(figsize=(6, 4))
|
||||
im = ax.imshow(
|
||||
alignment.transpose(), aspect="auto", origin="lower", interpolation="none"
|
||||
)
|
||||
fig.colorbar(im, ax=ax)
|
||||
xlabel = "Decoder timestep"
|
||||
if info is not None:
|
||||
xlabel += "\n\n" + info
|
||||
plt.xlabel(xlabel)
|
||||
plt.ylabel("Encoder timestep")
|
||||
plt.tight_layout()
|
||||
|
||||
fig.canvas.draw()
|
||||
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
||||
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
||||
plt.close()
|
||||
return data
|
||||
|
||||
|
||||
def load_wav_to_torch(full_path):
|
||||
sampling_rate, data = read(full_path)
|
||||
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
||||
|
||||
|
||||
def load_filepaths_and_text(filename, split="|"):
|
||||
with open(filename, encoding="utf-8") as f:
|
||||
filepaths_and_text = [line.strip().split(split) for line in f]
|
||||
return filepaths_and_text
|
||||
|
||||
|
||||
def get_hparams(init=True):
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"-c",
|
||||
"--config",
|
||||
type=str,
|
||||
default="./configs/base.json",
|
||||
help="JSON file for configuration",
|
||||
)
|
||||
parser.add_argument("-m", "--model", type=str, required=True, help="Model name")
|
||||
|
||||
args = parser.parse_args()
|
||||
model_dir = os.path.join("./logs", args.model)
|
||||
|
||||
if not os.path.exists(model_dir):
|
||||
os.makedirs(model_dir)
|
||||
|
||||
config_path = args.config
|
||||
config_save_path = os.path.join(model_dir, "config.json")
|
||||
if init:
|
||||
with open(config_path, "r", encoding="utf-8") as f:
|
||||
data = f.read()
|
||||
with open(config_save_path, "w", encoding="utf-8") as f:
|
||||
f.write(data)
|
||||
else:
|
||||
with open(config_save_path, "r", vencoding="utf-8") as f:
|
||||
data = f.read()
|
||||
config = json.loads(data)
|
||||
hparams = HParams(**config)
|
||||
hparams.model_dir = model_dir
|
||||
return hparams
|
||||
|
||||
|
||||
def clean_checkpoints(path_to_models="logs/44k/", n_ckpts_to_keep=2, sort_by_time=True):
|
||||
"""Freeing up space by deleting saved ckpts
|
||||
|
||||
Arguments:
|
||||
path_to_models -- Path to the model directory
|
||||
n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
|
||||
sort_by_time -- True -> chronologically delete ckpts
|
||||
False -> lexicographically delete ckpts
|
||||
"""
|
||||
import re
|
||||
|
||||
ckpts_files = [
|
||||
f
|
||||
for f in os.listdir(path_to_models)
|
||||
if os.path.isfile(os.path.join(path_to_models, f))
|
||||
]
|
||||
|
||||
def name_key(_f):
|
||||
return int(re.compile("._(\\d+)\\.pth").match(_f).group(1))
|
||||
|
||||
def time_key(_f):
|
||||
return os.path.getmtime(os.path.join(path_to_models, _f))
|
||||
|
||||
sort_key = time_key if sort_by_time else name_key
|
||||
|
||||
def x_sorted(_x):
|
||||
return sorted(
|
||||
[f for f in ckpts_files if f.startswith(_x) and not f.endswith("_0.pth")],
|
||||
key=sort_key,
|
||||
)
|
||||
to_del = [
|
||||
os.path.join(path_to_models, fn)
|
||||
for fn in (
|
||||
x_sorted("G")[:-n_ckpts_to_keep]
|
||||
+ x_sorted("D")[:-n_ckpts_to_keep]
|
||||
+ x_sorted("WD")[:-n_ckpts_to_keep]
|
||||
)
|
||||
]
|
||||
|
||||
def del_info(fn):
|
||||
return logger.info(f".. Free up space by deleting ckpt {fn}")
|
||||
|
||||
def del_routine(x):
|
||||
return [os.remove(x), del_info(x)]
|
||||
|
||||
[del_routine(fn) for fn in to_del]
|
||||
|
||||
|
||||
def get_hparams_from_dir(model_dir):
|
||||
config_save_path = os.path.join(model_dir, "config.json")
|
||||
with open(config_save_path, "r", encoding="utf-8") as f:
|
||||
data = f.read()
|
||||
config = json.loads(data)
|
||||
|
||||
hparams = HParams(**config)
|
||||
hparams.model_dir = model_dir
|
||||
return hparams
|
||||
|
||||
|
||||
def get_hparams_from_file(config_path):
|
||||
# print("config_path: ", config_path)
|
||||
with open(config_path, "r", encoding="utf-8") as f:
|
||||
data = f.read()
|
||||
config = json.loads(data)
|
||||
|
||||
hparams = HParams(**config)
|
||||
return hparams
|
||||
|
||||
|
||||
def check_git_hash(model_dir):
|
||||
source_dir = os.path.dirname(os.path.realpath(__file__))
|
||||
if not os.path.exists(os.path.join(source_dir, ".git")):
|
||||
logger.warn(
|
||||
"{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
||||
source_dir
|
||||
)
|
||||
)
|
||||
return
|
||||
|
||||
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
||||
|
||||
path = os.path.join(model_dir, "githash")
|
||||
if os.path.exists(path):
|
||||
saved_hash = open(path).read()
|
||||
if saved_hash != cur_hash:
|
||||
logger.warn(
|
||||
"git hash values are different. {}(saved) != {}(current)".format(
|
||||
saved_hash[:8], cur_hash[:8]
|
||||
)
|
||||
)
|
||||
else:
|
||||
open(path, "w").write(cur_hash)
|
||||
|
||||
|
||||
def get_logger(model_dir, filename="train.log"):
|
||||
global logger
|
||||
logger = logging.getLogger(os.path.basename(model_dir))
|
||||
logger.setLevel(logging.DEBUG)
|
||||
|
||||
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
||||
if not os.path.exists(model_dir):
|
||||
os.makedirs(model_dir)
|
||||
h = logging.FileHandler(os.path.join(model_dir, filename))
|
||||
h.setLevel(logging.DEBUG)
|
||||
h.setFormatter(formatter)
|
||||
logger.addHandler(h)
|
||||
return logger
|
||||
|
||||
|
||||
class HParams:
|
||||
def __init__(self, **kwargs):
|
||||
for k, v in kwargs.items():
|
||||
if type(v) == dict:
|
||||
v = HParams(**v)
|
||||
self[k] = v
|
||||
|
||||
def keys(self):
|
||||
return self.__dict__.keys()
|
||||
|
||||
def items(self):
|
||||
return self.__dict__.items()
|
||||
|
||||
def values(self):
|
||||
return self.__dict__.values()
|
||||
|
||||
def __len__(self):
|
||||
return len(self.__dict__)
|
||||
|
||||
def __getitem__(self, key):
|
||||
return getattr(self, key)
|
||||
|
||||
def __setitem__(self, key, value):
|
||||
return setattr(self, key, value)
|
||||
|
||||
def __contains__(self, key):
|
||||
return key in self.__dict__
|
||||
|
||||
def __repr__(self):
|
||||
return self.__dict__.__repr__()
|
||||
|
||||
|
||||
def load_model(model_path, config_path):
|
||||
hps = get_hparams_from_file(config_path)
|
||||
net = SynthesizerTrn(
|
||||
# len(symbols),
|
||||
108,
|
||||
hps.data.filter_length // 2 + 1,
|
||||
hps.train.segment_size // hps.data.hop_length,
|
||||
n_speakers=hps.data.n_speakers,
|
||||
**hps.model,
|
||||
).to("cpu")
|
||||
_ = net.eval()
|
||||
_ = load_checkpoint(model_path, net, None, skip_optimizer=True)
|
||||
return net
|
||||
|
||||
|
||||
def mix_model(
|
||||
network1, network2, output_path, voice_ratio=(0.5, 0.5), tone_ratio=(0.5, 0.5)
|
||||
):
|
||||
if hasattr(network1, "module"):
|
||||
state_dict1 = network1.module.state_dict()
|
||||
state_dict2 = network2.module.state_dict()
|
||||
else:
|
||||
state_dict1 = network1.state_dict()
|
||||
state_dict2 = network2.state_dict()
|
||||
for k in state_dict1.keys():
|
||||
if k not in state_dict2.keys():
|
||||
continue
|
||||
if "enc_p" in k:
|
||||
state_dict1[k] = (
|
||||
state_dict1[k].clone() * tone_ratio[0]
|
||||
+ state_dict2[k].clone() * tone_ratio[1]
|
||||
)
|
||||
else:
|
||||
state_dict1[k] = (
|
||||
state_dict1[k].clone() * voice_ratio[0]
|
||||
+ state_dict2[k].clone() * voice_ratio[1]
|
||||
)
|
||||
for k in state_dict2.keys():
|
||||
if k not in state_dict1.keys():
|
||||
state_dict1[k] = state_dict2[k].clone()
|
||||
torch.save(
|
||||
{"model": state_dict1, "iteration": 0, "optimizer": None, "learning_rate": 0},
|
||||
output_path,
|
||||
)
|
||||
|
||||
|
||||
def get_steps(model_path):
|
||||
matches = re.findall(r"\d+", model_path)
|
||||
return matches[-1] if matches else None
|
|
@ -0,0 +1,463 @@
|
|||
import gc
|
||||
import os
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import LongTensor
|
||||
from typing import Optional
|
||||
import soundfile as sf
|
||||
import logging
|
||||
import gradio as gr
|
||||
import librosa
|
||||
# bert_vits2
|
||||
from .bert_vits2 import utils
|
||||
from .bert_vits2.infer import get_net_g, latest_version, infer_multilang, infer
|
||||
from .bert_vits2.config import config
|
||||
from .bert_vits2 import re_matching
|
||||
from .bert_vits2.tools.sentence import split_by_language
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
class TextToSpeech:
|
||||
def __init__(self,
|
||||
device='cuda',
|
||||
):
|
||||
self.device = device = torch.device(device)
|
||||
|
||||
if config.webui_config.debug:
|
||||
logger.info("Enable DEBUG")
|
||||
|
||||
hps = utils.get_hparams_from_file(config.webui_config.config_path)
|
||||
self.hps = hps
|
||||
# 若config.json中未指定版本则默认为最新版本
|
||||
version = hps.version if hasattr(hps, "version") else latest_version
|
||||
self.version = version
|
||||
|
||||
net_g = get_net_g(
|
||||
model_path=config.webui_config.model, version=version, device=device, hps=hps
|
||||
)
|
||||
self.net_g = net_g
|
||||
|
||||
self.speaker_ids = speaker_ids = hps.data.spk2id
|
||||
self.speakers = speakers = list(speaker_ids.keys())
|
||||
self.speaker = speakers[0]
|
||||
|
||||
self.languages = languages = ["ZH", "JP", "EN", "mix", "auto"]
|
||||
|
||||
def free_up_memory(self):
|
||||
# Prior inference run might have large variables not cleaned up due to exception during the run.
|
||||
# Free up as much memory as possible to allow this run to be successful.
|
||||
gc.collect()
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
def process_mix(self, slice):
|
||||
_speaker = slice.pop()
|
||||
_text, _lang = [], []
|
||||
for lang, content in slice:
|
||||
content = content.split("|")
|
||||
content = [part for part in content if part != ""]
|
||||
if len(content) == 0:
|
||||
continue
|
||||
if len(_text) == 0:
|
||||
_text = [[part] for part in content]
|
||||
_lang = [[lang] for part in content]
|
||||
else:
|
||||
_text[-1].append(content[0])
|
||||
_lang[-1].append(lang)
|
||||
if len(content) > 1:
|
||||
_text += [[part] for part in content[1:]]
|
||||
_lang += [[lang] for part in content[1:]]
|
||||
return _text, _lang, _speaker
|
||||
|
||||
def process_auto(self, text):
|
||||
_text, _lang = [], []
|
||||
for slice in text.split("|"):
|
||||
if slice == "":
|
||||
continue
|
||||
temp_text, temp_lang = [], []
|
||||
sentences_list = split_by_language(slice, target_languages=["zh", "ja", "en"])
|
||||
for sentence, lang in sentences_list:
|
||||
if sentence == "":
|
||||
continue
|
||||
temp_text.append(sentence)
|
||||
if lang == "ja":
|
||||
lang = "jp"
|
||||
temp_lang.append(lang.upper())
|
||||
_text.append(temp_text)
|
||||
_lang.append(temp_lang)
|
||||
return _text, _lang
|
||||
|
||||
def generate_audio(
|
||||
self,
|
||||
slices,
|
||||
sdp_ratio,
|
||||
noise_scale,
|
||||
noise_scale_w,
|
||||
length_scale,
|
||||
speaker,
|
||||
language,
|
||||
reference_audio,
|
||||
emotion,
|
||||
style_text,
|
||||
style_weight,
|
||||
skip_start=False,
|
||||
skip_end=False,
|
||||
):
|
||||
audio_list = []
|
||||
# silence = np.zeros(hps.data.sampling_rate // 2, dtype=np.int16)
|
||||
|
||||
self.free_up_memory()
|
||||
|
||||
with torch.no_grad():
|
||||
for idx, piece in enumerate(slices):
|
||||
skip_start = idx != 0
|
||||
skip_end = idx != len(slices) - 1
|
||||
audio = infer(
|
||||
piece,
|
||||
reference_audio=reference_audio,
|
||||
emotion=emotion,
|
||||
sdp_ratio=sdp_ratio,
|
||||
noise_scale=noise_scale,
|
||||
noise_scale_w=noise_scale_w,
|
||||
length_scale=length_scale,
|
||||
sid=speaker,
|
||||
language=language,
|
||||
hps=self.hps,
|
||||
net_g=self.net_g,
|
||||
device=self.device,
|
||||
skip_start=skip_start,
|
||||
skip_end=skip_end,
|
||||
style_text=style_text,
|
||||
style_weight=style_weight,
|
||||
)
|
||||
audio16bit = gr.processing_utils.convert_to_16_bit_wav(audio)
|
||||
audio_list.append(audio16bit)
|
||||
return audio_list
|
||||
|
||||
|
||||
def generate_audio_multilang(
|
||||
self,
|
||||
slices,
|
||||
sdp_ratio,
|
||||
noise_scale,
|
||||
noise_scale_w,
|
||||
length_scale,
|
||||
speaker,
|
||||
language,
|
||||
reference_audio,
|
||||
emotion,
|
||||
skip_start=False,
|
||||
skip_end=False,
|
||||
en_ratio=1.0
|
||||
):
|
||||
audio_list = []
|
||||
# silence = np.zeros(hps.data.sampling_rate // 2, dtype=np.int16)
|
||||
|
||||
self.free_up_memory()
|
||||
|
||||
with torch.no_grad():
|
||||
for idx, piece in enumerate(slices):
|
||||
skip_start = idx != 0
|
||||
skip_end = idx != len(slices) - 1
|
||||
audio = infer_multilang(
|
||||
piece,
|
||||
reference_audio=reference_audio,
|
||||
emotion=emotion,
|
||||
sdp_ratio=sdp_ratio,
|
||||
noise_scale=noise_scale,
|
||||
noise_scale_w=noise_scale_w,
|
||||
length_scale=length_scale,
|
||||
sid=speaker,
|
||||
language=language[idx],
|
||||
hps=self.hps,
|
||||
net_g=self.net_g,
|
||||
device=self.device,
|
||||
skip_start=skip_start,
|
||||
skip_end=skip_end,
|
||||
en_ratio=en_ratio
|
||||
)
|
||||
audio16bit = gr.processing_utils.convert_to_16_bit_wav(audio)
|
||||
audio_list.append(audio16bit)
|
||||
return audio_list
|
||||
|
||||
|
||||
|
||||
def process_text(self,
|
||||
text: str,
|
||||
speaker,
|
||||
sdp_ratio,
|
||||
noise_scale,
|
||||
noise_scale_w,
|
||||
length_scale,
|
||||
language,
|
||||
reference_audio,
|
||||
emotion,
|
||||
style_text=None,
|
||||
style_weight=0,
|
||||
en_ratio=1.0
|
||||
):
|
||||
hps = self.hps
|
||||
audio_list = []
|
||||
if language == "mix":
|
||||
bool_valid, str_valid = re_matching.validate_text(text)
|
||||
if not bool_valid:
|
||||
return str_valid, (
|
||||
hps.data.sampling_rate,
|
||||
np.concatenate([np.zeros(hps.data.sampling_rate // 2)]),
|
||||
)
|
||||
for slice in re_matching.text_matching(text):
|
||||
_text, _lang, _speaker = self.process_mix(slice)
|
||||
if _speaker is None:
|
||||
continue
|
||||
print(f"Text: {_text}\nLang: {_lang}")
|
||||
audio_list.extend(
|
||||
self.generate_audio_multilang(
|
||||
_text,
|
||||
sdp_ratio,
|
||||
noise_scale,
|
||||
noise_scale_w,
|
||||
length_scale,
|
||||
_speaker,
|
||||
_lang,
|
||||
reference_audio,
|
||||
emotion,
|
||||
en_ratio=en_ratio
|
||||
)
|
||||
)
|
||||
elif language.lower() == "auto":
|
||||
_text, _lang = self.process_auto(text)
|
||||
print(f"Text: {_text}\nLang: {_lang}")
|
||||
audio_list.extend(
|
||||
self.generate_audio_multilang(
|
||||
_text,
|
||||
sdp_ratio,
|
||||
noise_scale,
|
||||
noise_scale_w,
|
||||
length_scale,
|
||||
speaker,
|
||||
_lang,
|
||||
reference_audio,
|
||||
emotion,
|
||||
en_ratio=en_ratio
|
||||
)
|
||||
)
|
||||
else:
|
||||
audio_list.extend(
|
||||
self.generate_audio(
|
||||
text.split("|"),
|
||||
sdp_ratio,
|
||||
noise_scale,
|
||||
noise_scale_w,
|
||||
length_scale,
|
||||
speaker,
|
||||
language,
|
||||
reference_audio,
|
||||
emotion,
|
||||
style_text,
|
||||
style_weight,
|
||||
)
|
||||
)
|
||||
return audio_list
|
||||
|
||||
def tts_split(
|
||||
self,
|
||||
text: str,
|
||||
speaker,
|
||||
sdp_ratio,
|
||||
noise_scale,
|
||||
noise_scale_w,
|
||||
length_scale,
|
||||
language,
|
||||
cut_by_sent,
|
||||
interval_between_para,
|
||||
interval_between_sent,
|
||||
reference_audio,
|
||||
emotion,
|
||||
style_text,
|
||||
style_weight,
|
||||
en_ratio
|
||||
):
|
||||
while text.find("\n\n") != -1:
|
||||
text = text.replace("\n\n", "\n")
|
||||
text = text.replace("|", "")
|
||||
para_list = re_matching.cut_para(text)
|
||||
para_list = [p for p in para_list if p != ""]
|
||||
audio_list = []
|
||||
for p in para_list:
|
||||
if not cut_by_sent:
|
||||
audio_list += self.process_text(
|
||||
p,
|
||||
speaker,
|
||||
sdp_ratio,
|
||||
noise_scale,
|
||||
noise_scale_w,
|
||||
length_scale,
|
||||
language,
|
||||
reference_audio,
|
||||
emotion,
|
||||
style_text,
|
||||
style_weight,
|
||||
en_ratio
|
||||
)
|
||||
silence = np.zeros((int)(44100 * interval_between_para), dtype=np.int16)
|
||||
audio_list.append(silence)
|
||||
else:
|
||||
audio_list_sent = []
|
||||
sent_list = re_matching.cut_sent(p)
|
||||
sent_list = [s for s in sent_list if s != ""]
|
||||
for s in sent_list:
|
||||
audio_list_sent += self.process_text(
|
||||
s,
|
||||
speaker,
|
||||
sdp_ratio,
|
||||
noise_scale,
|
||||
noise_scale_w,
|
||||
length_scale,
|
||||
language,
|
||||
reference_audio,
|
||||
emotion,
|
||||
style_text,
|
||||
style_weight,
|
||||
en_ratio
|
||||
)
|
||||
silence = np.zeros((int)(44100 * interval_between_sent))
|
||||
audio_list_sent.append(silence)
|
||||
if (interval_between_para - interval_between_sent) > 0:
|
||||
silence = np.zeros(
|
||||
(int)(44100 * (interval_between_para - interval_between_sent))
|
||||
)
|
||||
audio_list_sent.append(silence)
|
||||
audio16bit = gr.processing_utils.convert_to_16_bit_wav(
|
||||
np.concatenate(audio_list_sent)
|
||||
) # 对完整句子做音量归一
|
||||
audio_list.append(audio16bit)
|
||||
audio_concat = np.concatenate(audio_list)
|
||||
return ("Success", (self.hps.data.sampling_rate, audio_concat))
|
||||
|
||||
|
||||
def tts_fn(
|
||||
self,
|
||||
text: str,
|
||||
speaker,
|
||||
sdp_ratio,
|
||||
noise_scale,
|
||||
noise_scale_w,
|
||||
length_scale,
|
||||
language,
|
||||
reference_audio,
|
||||
emotion,
|
||||
prompt_mode,
|
||||
style_text=None,
|
||||
style_weight=0,
|
||||
):
|
||||
if style_text == "":
|
||||
style_text = None
|
||||
if prompt_mode == "Audio prompt":
|
||||
if reference_audio == None:
|
||||
return ("Invalid audio prompt", None)
|
||||
else:
|
||||
reference_audio = self.load_audio(reference_audio)[1]
|
||||
else:
|
||||
reference_audio = None
|
||||
|
||||
audio_list = self.process_text(
|
||||
text,
|
||||
speaker,
|
||||
sdp_ratio,
|
||||
noise_scale,
|
||||
noise_scale_w,
|
||||
length_scale,
|
||||
language,
|
||||
reference_audio,
|
||||
emotion,
|
||||
style_text,
|
||||
style_weight,
|
||||
)
|
||||
|
||||
audio_concat = np.concatenate(audio_list)
|
||||
return "Success", (self.hps.data.sampling_rate, audio_concat)
|
||||
|
||||
def load_audio(self, path):
|
||||
audio, sr = librosa.load(path, 48000)
|
||||
# audio = librosa.resample(audio, 44100, 48000)
|
||||
return sr, audio
|
||||
|
||||
def format_utils(self, text, speaker):
|
||||
_text, _lang = self.process_auto(text)
|
||||
res = f"[{speaker}]"
|
||||
for lang_s, content_s in zip(_lang, _text):
|
||||
for lang, content in zip(lang_s, content_s):
|
||||
# res += f"<{lang.lower()}>{content}"
|
||||
# 部分中文会被识别成日文,强转成中文
|
||||
lang = lang.lower().replace("jp", "zh")
|
||||
res += f"<{lang}>{content}"
|
||||
res += "|"
|
||||
return "mix", res[:-1]
|
||||
|
||||
def synthesize(self,
|
||||
text,
|
||||
speaker_idx=0, # self.speakers 的 index,指定说话
|
||||
sdp_ratio=0.5,
|
||||
noise_scale=0.6,
|
||||
noise_scale_w=0.9,
|
||||
length_scale=1.0, # 越大语速越慢
|
||||
language="mix", # ["ZH", "EN", "mix"] 三选一
|
||||
opt_cut_by_send=False, # 按句切分 在按段落切分的基础上再按句子切分文本
|
||||
interval_between_para=1.0, # 段间停顿(秒),需要大于句间停顿才有效
|
||||
interval_between_sent=0.2, # 句间停顿(秒),勾选按句切分才生效
|
||||
audio_prompt=None,
|
||||
text_prompt="",
|
||||
prompt_mode="Text prompts",
|
||||
style_text="", # "使用辅助文本的语意来辅助生成对话(语言保持与主文本相同)\n\n"
|
||||
# "**注意**:不要使用**指令式文本**(如:开心),要使用**带有强烈情感的文本**(如:我好快乐!!!)\n\n"
|
||||
# "效果较不明确,留空即为不使用该功能"
|
||||
style_weight=0.7, # "主文本和辅助文本的bert混合比率,0表示仅主文本,1表示仅辅助文本
|
||||
en_ratio=1.0 # 中英混合时,英文速度控制,越大英文速度越慢
|
||||
):
|
||||
"""
|
||||
return: audio, sample_rate
|
||||
"""
|
||||
|
||||
speaker = self.speakers[speaker_idx]
|
||||
|
||||
if language == "mix":
|
||||
language, text = self.format_utils(text, speaker)
|
||||
|
||||
text_output, audio_output = self.tts_split(
|
||||
text,
|
||||
speaker,
|
||||
sdp_ratio,
|
||||
noise_scale,
|
||||
noise_scale_w,
|
||||
length_scale,
|
||||
language,
|
||||
opt_cut_by_send,
|
||||
interval_between_para,
|
||||
interval_between_sent,
|
||||
audio_prompt,
|
||||
text_prompt,
|
||||
style_text,
|
||||
style_weight,
|
||||
en_ratio
|
||||
)
|
||||
else:
|
||||
text_output, audio_output = self.tts_fn(
|
||||
text,
|
||||
speaker,
|
||||
sdp_ratio,
|
||||
noise_scale,
|
||||
noise_scale_w,
|
||||
length_scale,
|
||||
language,
|
||||
audio_prompt,
|
||||
text_prompt,
|
||||
prompt_mode,
|
||||
style_text,
|
||||
style_weight
|
||||
)
|
||||
|
||||
# return text_output, audio_output
|
||||
return audio_output[1], audio_output[0]
|
||||
|
||||
def print_speakers_info(self):
|
||||
for i, speaker in enumerate(self.speakers):
|
||||
print(f"id: {i}, speaker: {speaker}")
|
Loading…
Reference in New Issue