37 lines
1.3 KiB
Python
37 lines
1.3 KiB
Python
import unittest
|
|
|
|
from modelscope.pipelines import pipeline
|
|
from modelscope.utils.constant import Tasks
|
|
from modelscope.utils.logger import get_logger
|
|
|
|
logger = get_logger()
|
|
|
|
|
|
class TestParaformerInferencePipelines(unittest.TestCase):
|
|
def test_funasr_path(self):
|
|
import funasr
|
|
import os
|
|
|
|
logger.info("run_dir:{0} ; funasr_path: {1}".format(os.getcwd(), funasr.__file__))
|
|
|
|
def test_inference_pipeline(self):
|
|
inference_pipeline = pipeline(
|
|
task=Tasks.auto_speech_recognition,
|
|
model="damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch",
|
|
model_revision="v1.2.1",
|
|
vad_model="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch",
|
|
vad_model_revision="v1.1.8",
|
|
punc_model="damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch",
|
|
punc_model_revision="v1.1.6",
|
|
ngpu=1,
|
|
)
|
|
rec_result = inference_pipeline(
|
|
audio_in="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav"
|
|
)
|
|
logger.info("asr_vad_punc inference result: {0}".format(rec_result))
|
|
assert rec_result["text"] == "欢迎大家来体验达摩院推出的语音识别模型。"
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|