161 lines
4.7 KiB
Python
161 lines
4.7 KiB
Python
"""
|
|
Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights
|
|
Reserved. MIT License (https://opensource.org/licenses/MIT)
|
|
|
|
2022-2023 by zhaomingwork@qq.com
|
|
"""
|
|
|
|
# pip install websocket-client
|
|
import ssl
|
|
from websocket import ABNF
|
|
from websocket import create_connection
|
|
from queue import Queue
|
|
import threading
|
|
import traceback
|
|
import json
|
|
import time
|
|
import numpy as np
|
|
|
|
|
|
# class for recognizer in websocket
|
|
class Funasr_websocket_recognizer:
|
|
"""
|
|
python asr recognizer lib
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
host="127.0.0.1",
|
|
port="30035",
|
|
is_ssl=True,
|
|
chunk_size="0, 10, 5",
|
|
chunk_interval=10,
|
|
mode="offline",
|
|
wav_name="default",
|
|
):
|
|
"""
|
|
host: server host ip
|
|
port: server port
|
|
is_ssl: True for wss protocal, False for ws
|
|
"""
|
|
try:
|
|
if is_ssl == True:
|
|
ssl_context = ssl.SSLContext()
|
|
ssl_context.check_hostname = False
|
|
ssl_context.verify_mode = ssl.CERT_NONE
|
|
uri = "wss://{}:{}".format(host, port)
|
|
ssl_opt = {"cert_reqs": ssl.CERT_NONE}
|
|
else:
|
|
uri = "ws://{}:{}".format(host, port)
|
|
ssl_context = None
|
|
ssl_opt = None
|
|
self.host = host
|
|
self.port = port
|
|
|
|
self.msg_queue = Queue() # used for recognized result text
|
|
|
|
print("connect to url", uri)
|
|
self.websocket = create_connection(uri, ssl=ssl_context, sslopt=ssl_opt)
|
|
|
|
self.thread_msg = threading.Thread(
|
|
target=Funasr_websocket_recognizer.thread_rec_msg, args=(self,)
|
|
)
|
|
self.thread_msg.start()
|
|
chunk_size = [int(x) for x in chunk_size.split(",")]
|
|
stride = int(60 * chunk_size[1] / chunk_interval / 1000 * 16000 * 2)
|
|
chunk_num = (len(audio_bytes) - 1) // stride + 1
|
|
|
|
message = json.dumps(
|
|
{
|
|
"mode": mode,
|
|
"chunk_size": chunk_size,
|
|
"encoder_chunk_look_back": 4,
|
|
"decoder_chunk_look_back": 1,
|
|
"chunk_interval": chunk_interval,
|
|
"wav_name": wav_name,
|
|
"is_speaking": True,
|
|
}
|
|
)
|
|
|
|
self.websocket.send(message)
|
|
|
|
print("send json", message)
|
|
|
|
except Exception as e:
|
|
print("Exception:", e)
|
|
traceback.print_exc()
|
|
|
|
# threads for rev msg
|
|
def thread_rec_msg(self):
|
|
try:
|
|
while True:
|
|
msg = self.websocket.recv()
|
|
if msg is None or len(msg) == 0:
|
|
continue
|
|
msg = json.loads(msg)
|
|
|
|
self.msg_queue.put(msg)
|
|
except Exception as e:
|
|
print("client closed")
|
|
|
|
# feed data to asr engine, wait_time means waiting for result until time out
|
|
def feed_chunk(self, chunk, wait_time=0.01):
|
|
try:
|
|
self.websocket.send(chunk, ABNF.OPCODE_BINARY)
|
|
# loop to check if there is a message, timeout in 0.01s
|
|
while True:
|
|
msg = self.msg_queue.get(timeout=wait_time)
|
|
if self.msg_queue.empty():
|
|
break
|
|
|
|
return msg
|
|
except:
|
|
return ""
|
|
|
|
def close(self, timeout=1):
|
|
message = json.dumps({"is_speaking": False})
|
|
self.websocket.send(message)
|
|
# sleep for timeout seconds to wait for result
|
|
time.sleep(timeout)
|
|
msg = ""
|
|
while not self.msg_queue.empty():
|
|
msg = self.msg_queue.get()
|
|
|
|
self.websocket.close()
|
|
# only resturn the last msg
|
|
return msg
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
print("example for Funasr_websocket_recognizer")
|
|
import wave
|
|
|
|
wav_path = "/Users/zhifu/Downloads/modelscope_models/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/example/asr_example.wav"
|
|
with wave.open(wav_path, "rb") as wav_file:
|
|
params = wav_file.getparams()
|
|
frames = wav_file.readframes(wav_file.getnframes())
|
|
audio_bytes = bytes(frames)
|
|
|
|
stride = int(60 * 10 / 10 / 1000 * 16000 * 2)
|
|
chunk_num = (len(audio_bytes) - 1) // stride + 1
|
|
# create an recognizer
|
|
rcg = Funasr_websocket_recognizer(
|
|
host="127.0.0.1", port="10095", is_ssl=True, mode="2pass", chunk_size="0,10,5"
|
|
)
|
|
# loop to send chunk
|
|
for i in range(chunk_num):
|
|
|
|
beg = i * stride
|
|
data = audio_bytes[beg : beg + stride]
|
|
|
|
text = rcg.feed_chunk(data, wait_time=0.02)
|
|
if len(text) > 0:
|
|
print("text", text)
|
|
time.sleep(0.05)
|
|
|
|
# get last message
|
|
text = rcg.close(timeout=3)
|
|
print("text", text)
|