FunASR/runtime/python/utils/test_cer.sh

75 lines
2.1 KiB
Bash

split_scps_tool=split_scp.pl
inference_tool=test_cer.py
proce_text_tool=proce_text.py
compute_wer_tool=compute_wer.py
nj=32
stage=0
stop_stage=2
scp="/nfs/haoneng.lhn/funasr_data/aishell-1/data/test/wav.scp"
label_text="/nfs/haoneng.lhn/funasr_data/aishell-1/data/test/text"
export_root="/nfs/zhifu.gzf/export"
#:<<!
model_name="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
backend="onnx" # "torch"
quantize='true' # 'False'
fallback_op_num_torch=20
tag=${model_name}/${backend}_quantize_${quantize}_${fallback_op_num_torch}
!
output_dir=${export_root}/logs/${tag}/split$nj
mkdir -p ${output_dir}
echo ${output_dir}
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ];then
python -m funasr.export.export_model --model-name ${model_name} --export-dir ${export_root} --type ${backend} --quantize ${quantize} --audio_in ${scp} --fallback-num ${fallback_op_num_torch}
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ];then
model_dir=${export_root}/${model_name}
split_scps=""
for JOB in $(seq ${nj}); do
split_scps="$split_scps $output_dir/wav.$JOB.scp"
done
perl ${split_scps_tool} $scp ${split_scps}
for JOB in $(seq ${nj}); do
{
core_id=`expr $JOB - 1`
taskset -c ${core_id} python ${inference_tool} --backend ${backend} --model_dir ${model_dir} --wav_file ${output_dir}/wav.$JOB.scp --quantize ${quantize} --output_dir ${output_dir}/${JOB} &> ${output_dir}/log.$JOB.txt
}&
done
wait
mkdir -p ${output_dir}/1best_recog
for f in token text; do
if [ -f "${output_dir}/1/${f}" ]; then
for JOB in $(seq "${nj}"); do
cat "${output_dir}/${JOB}/${f}"
done | sort -k1 >"${output_dir}/1best_recog/${f}"
fi
done
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ];then
echo "Computing WER ..."
python ${proce_text_tool} ${output_dir}/1best_recog/text ${output_dir}/1best_recog/text.proc
python ${proce_text_tool} ${label_text} ${output_dir}/1best_recog/text.ref
python ${compute_wer_tool} ${output_dir}/1best_recog/text.ref ${output_dir}/1best_recog/text.proc ${output_dir}/1best_recog/text.cer
tail -n 3 ${output_dir}/1best_recog/text.cer
fi