67 lines
2.9 KiB
Python
67 lines
2.9 KiB
Python
# -*- encoding: utf-8 -*-
|
|
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
|
|
# MIT License (https://opensource.org/licenses/MIT)
|
|
|
|
import numpy as np
|
|
|
|
|
|
def time_stamp_lfr6_onnx(us_cif_peak, char_list, begin_time=0.0, total_offset=-1.5):
|
|
if not len(char_list):
|
|
return []
|
|
START_END_THRESHOLD = 5
|
|
MAX_TOKEN_DURATION = 30
|
|
TIME_RATE = 10.0 * 6 / 1000 / 3 # 3 times upsampled
|
|
cif_peak = us_cif_peak.reshape(-1)
|
|
num_frames = cif_peak.shape[-1]
|
|
if char_list[-1] == "</s>":
|
|
char_list = char_list[:-1]
|
|
# char_list = [i for i in text]
|
|
timestamp_list = []
|
|
new_char_list = []
|
|
# for bicif model trained with large data, cif2 actually fires when a character starts
|
|
# so treat the frames between two peaks as the duration of the former token
|
|
fire_place = np.where(cif_peak > 1.0 - 1e-4)[0] + total_offset # np format
|
|
num_peak = len(fire_place)
|
|
assert num_peak == len(char_list) + 1 # number of peaks is supposed to be number of tokens + 1
|
|
# begin silence
|
|
if fire_place[0] > START_END_THRESHOLD:
|
|
# char_list.insert(0, '<sil>')
|
|
timestamp_list.append([0.0, fire_place[0] * TIME_RATE])
|
|
new_char_list.append("<sil>")
|
|
# tokens timestamp
|
|
for i in range(len(fire_place) - 1):
|
|
new_char_list.append(char_list[i])
|
|
if (
|
|
i == len(fire_place) - 2
|
|
or MAX_TOKEN_DURATION < 0
|
|
or fire_place[i + 1] - fire_place[i] < MAX_TOKEN_DURATION
|
|
):
|
|
timestamp_list.append([fire_place[i] * TIME_RATE, fire_place[i + 1] * TIME_RATE])
|
|
else:
|
|
# cut the duration to token and sil of the 0-weight frames last long
|
|
_split = fire_place[i] + MAX_TOKEN_DURATION
|
|
timestamp_list.append([fire_place[i] * TIME_RATE, _split * TIME_RATE])
|
|
timestamp_list.append([_split * TIME_RATE, fire_place[i + 1] * TIME_RATE])
|
|
new_char_list.append("<sil>")
|
|
# tail token and end silence
|
|
if num_frames - fire_place[-1] > START_END_THRESHOLD:
|
|
_end = (num_frames + fire_place[-1]) / 2
|
|
timestamp_list[-1][1] = _end * TIME_RATE
|
|
timestamp_list.append([_end * TIME_RATE, num_frames * TIME_RATE])
|
|
new_char_list.append("<sil>")
|
|
else:
|
|
timestamp_list[-1][1] = num_frames * TIME_RATE
|
|
if begin_time: # add offset time in model with vad
|
|
for i in range(len(timestamp_list)):
|
|
timestamp_list[i][0] = timestamp_list[i][0] + begin_time / 1000.0
|
|
timestamp_list[i][1] = timestamp_list[i][1] + begin_time / 1000.0
|
|
assert len(new_char_list) == len(timestamp_list)
|
|
res_str = ""
|
|
for char, timestamp in zip(new_char_list, timestamp_list):
|
|
res_str += "{} {} {};".format(char, timestamp[0], timestamp[1])
|
|
res = []
|
|
for char, timestamp in zip(new_char_list, timestamp_list):
|
|
if char != "<sil>":
|
|
res.append([int(timestamp[0] * 1000), int(timestamp[1] * 1000)])
|
|
return res_str, res
|