321 lines
14 KiB
Python
321 lines
14 KiB
Python
# -*- encoding: utf-8 -*-
|
||
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
|
||
# MIT License (https://opensource.org/licenses/MIT)
|
||
|
||
import os.path
|
||
from pathlib import Path
|
||
from typing import List, Union, Tuple
|
||
import numpy as np
|
||
import json
|
||
from .utils.utils import ONNXRuntimeError, OrtInferSession, get_logger, read_yaml
|
||
from .utils.utils import (
|
||
TokenIDConverter,
|
||
split_to_mini_sentence,
|
||
code_mix_split_words,
|
||
code_mix_split_words_jieba,
|
||
)
|
||
|
||
logging = get_logger()
|
||
|
||
|
||
class CT_Transformer:
|
||
"""
|
||
Author: Speech Lab of DAMO Academy, Alibaba Group
|
||
CT-Transformer: Controllable time-delay transformer for real-time punctuation prediction and disfluency detection
|
||
https://arxiv.org/pdf/2003.01309.pdf
|
||
"""
|
||
|
||
def __init__(
|
||
self,
|
||
model_dir: Union[str, Path] = None,
|
||
batch_size: int = 1,
|
||
device_id: Union[str, int] = "-1",
|
||
quantize: bool = False,
|
||
intra_op_num_threads: int = 4,
|
||
cache_dir: str = None,
|
||
**kwargs
|
||
):
|
||
|
||
if not Path(model_dir).exists():
|
||
try:
|
||
from modelscope.hub.snapshot_download import snapshot_download
|
||
except:
|
||
raise "You are exporting model from modelscope, please install modelscope and try it again. To install modelscope, you could:\n" "\npip3 install -U modelscope\n" "For the users in China, you could install with the command:\n" "\npip3 install -U modelscope -i https://mirror.sjtu.edu.cn/pypi/web/simple"
|
||
try:
|
||
model_dir = snapshot_download(model_dir, cache_dir=cache_dir)
|
||
except:
|
||
raise "model_dir must be model_name in modelscope or local path downloaded from modelscope, but is {}".format(
|
||
model_dir
|
||
)
|
||
|
||
model_file = os.path.join(model_dir, "model.onnx")
|
||
if quantize:
|
||
model_file = os.path.join(model_dir, "model_quant.onnx")
|
||
if not os.path.exists(model_file):
|
||
print(".onnx is not exist, begin to export onnx")
|
||
try:
|
||
from funasr import AutoModel
|
||
except:
|
||
raise "You are exporting onnx, please install funasr and try it again. To install funasr, you could:\n" "\npip3 install -U funasr\n" "For the users in China, you could install with the command:\n" "\npip3 install -U funasr -i https://mirror.sjtu.edu.cn/pypi/web/simple"
|
||
|
||
model = AutoModel(model=model_dir)
|
||
model_dir = model.export(type="onnx", quantize=quantize, **kwargs)
|
||
|
||
config_file = os.path.join(model_dir, "config.yaml")
|
||
config = read_yaml(config_file)
|
||
token_list = os.path.join(model_dir, "tokens.json")
|
||
with open(token_list, "r", encoding="utf-8") as f:
|
||
token_list = json.load(f)
|
||
|
||
self.converter = TokenIDConverter(token_list)
|
||
self.ort_infer = OrtInferSession(
|
||
model_file, device_id, intra_op_num_threads=intra_op_num_threads
|
||
)
|
||
self.batch_size = 1
|
||
self.punc_list = config["model_conf"]["punc_list"]
|
||
self.period = 0
|
||
for i in range(len(self.punc_list)):
|
||
if self.punc_list[i] == ",":
|
||
self.punc_list[i] = ","
|
||
elif self.punc_list[i] == "?":
|
||
self.punc_list[i] = "?"
|
||
elif self.punc_list[i] == "。":
|
||
self.period = i
|
||
self.jieba_usr_dict_path = os.path.join(model_dir, "jieba_usr_dict")
|
||
if os.path.exists(self.jieba_usr_dict_path):
|
||
self.seg_jieba = True
|
||
self.code_mix_split_words_jieba = code_mix_split_words_jieba(self.jieba_usr_dict_path)
|
||
else:
|
||
self.seg_jieba = False
|
||
|
||
def __call__(self, text: Union[list, str], split_size=20):
|
||
if self.seg_jieba:
|
||
split_text = self.code_mix_split_words_jieba(text)
|
||
else:
|
||
split_text = code_mix_split_words(text)
|
||
split_text_id = self.converter.tokens2ids(split_text)
|
||
mini_sentences = split_to_mini_sentence(split_text, split_size)
|
||
mini_sentences_id = split_to_mini_sentence(split_text_id, split_size)
|
||
assert len(mini_sentences) == len(mini_sentences_id)
|
||
cache_sent = []
|
||
cache_sent_id = []
|
||
new_mini_sentence = ""
|
||
new_mini_sentence_punc = []
|
||
cache_pop_trigger_limit = 200
|
||
for mini_sentence_i in range(len(mini_sentences)):
|
||
mini_sentence = mini_sentences[mini_sentence_i]
|
||
mini_sentence_id = mini_sentences_id[mini_sentence_i]
|
||
mini_sentence = cache_sent + mini_sentence
|
||
mini_sentence_id = np.array(cache_sent_id + mini_sentence_id, dtype="int32")
|
||
data = {
|
||
"text": mini_sentence_id[None, :],
|
||
"text_lengths": np.array([len(mini_sentence_id)], dtype="int32"),
|
||
}
|
||
try:
|
||
outputs = self.infer(data["text"], data["text_lengths"])
|
||
y = outputs[0]
|
||
punctuations = np.argmax(y, axis=-1)[0]
|
||
assert punctuations.size == len(mini_sentence)
|
||
except ONNXRuntimeError:
|
||
logging.warning("error")
|
||
|
||
# Search for the last Period/QuestionMark as cache
|
||
if mini_sentence_i < len(mini_sentences) - 1:
|
||
sentenceEnd = -1
|
||
last_comma_index = -1
|
||
for i in range(len(punctuations) - 2, 1, -1):
|
||
if (
|
||
self.punc_list[punctuations[i]] == "。"
|
||
or self.punc_list[punctuations[i]] == "?"
|
||
):
|
||
sentenceEnd = i
|
||
break
|
||
if last_comma_index < 0 and self.punc_list[punctuations[i]] == ",":
|
||
last_comma_index = i
|
||
|
||
if (
|
||
sentenceEnd < 0
|
||
and len(mini_sentence) > cache_pop_trigger_limit
|
||
and last_comma_index >= 0
|
||
):
|
||
# The sentence it too long, cut off at a comma.
|
||
sentenceEnd = last_comma_index
|
||
punctuations[sentenceEnd] = self.period
|
||
cache_sent = mini_sentence[sentenceEnd + 1 :]
|
||
cache_sent_id = mini_sentence_id[sentenceEnd + 1 :].tolist()
|
||
mini_sentence = mini_sentence[0 : sentenceEnd + 1]
|
||
punctuations = punctuations[0 : sentenceEnd + 1]
|
||
|
||
new_mini_sentence_punc += [int(x) for x in punctuations]
|
||
words_with_punc = []
|
||
for i in range(len(mini_sentence)):
|
||
if i > 0:
|
||
if (
|
||
len(mini_sentence[i][0].encode()) == 1
|
||
and len(mini_sentence[i - 1][0].encode()) == 1
|
||
):
|
||
mini_sentence[i] = " " + mini_sentence[i]
|
||
words_with_punc.append(mini_sentence[i])
|
||
if self.punc_list[punctuations[i]] != "_":
|
||
words_with_punc.append(self.punc_list[punctuations[i]])
|
||
new_mini_sentence += "".join(words_with_punc)
|
||
# Add Period for the end of the sentence
|
||
new_mini_sentence_out = new_mini_sentence
|
||
new_mini_sentence_punc_out = new_mini_sentence_punc
|
||
if mini_sentence_i == len(mini_sentences) - 1:
|
||
if new_mini_sentence[-1] == "," or new_mini_sentence[-1] == "、":
|
||
new_mini_sentence_out = new_mini_sentence[:-1] + "。"
|
||
new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [self.period]
|
||
elif new_mini_sentence[-1] != "。" and new_mini_sentence[-1] != "?":
|
||
new_mini_sentence_out = new_mini_sentence + "。"
|
||
new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [self.period]
|
||
return new_mini_sentence_out, new_mini_sentence_punc_out
|
||
|
||
def infer(self, feats: np.ndarray, feats_len: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
||
outputs = self.ort_infer([feats, feats_len])
|
||
return outputs
|
||
|
||
|
||
class CT_Transformer_VadRealtime(CT_Transformer):
|
||
"""
|
||
Author: Speech Lab of DAMO Academy, Alibaba Group
|
||
CT-Transformer: Controllable time-delay transformer for real-time punctuation prediction and disfluency detection
|
||
https://arxiv.org/pdf/2003.01309.pdf
|
||
"""
|
||
|
||
def __init__(self, *args, **kwargs):
|
||
super().__init__(*args, **kwargs)
|
||
|
||
def __call__(self, text: str, param_dict: map, split_size=20):
|
||
cache_key = "cache"
|
||
assert cache_key in param_dict
|
||
cache = param_dict[cache_key]
|
||
if cache is not None and len(cache) > 0:
|
||
precache = "".join(cache)
|
||
else:
|
||
precache = ""
|
||
cache = []
|
||
full_text = precache + " " + text
|
||
split_text = code_mix_split_words(full_text)
|
||
split_text_id = self.converter.tokens2ids(split_text)
|
||
mini_sentences = split_to_mini_sentence(split_text, split_size)
|
||
mini_sentences_id = split_to_mini_sentence(split_text_id, split_size)
|
||
new_mini_sentence_punc = []
|
||
assert len(mini_sentences) == len(mini_sentences_id)
|
||
|
||
cache_sent = []
|
||
cache_sent_id = np.array([], dtype="int32")
|
||
sentence_punc_list = []
|
||
sentence_words_list = []
|
||
cache_pop_trigger_limit = 200
|
||
skip_num = 0
|
||
for mini_sentence_i in range(len(mini_sentences)):
|
||
mini_sentence = mini_sentences[mini_sentence_i]
|
||
mini_sentence_id = mini_sentences_id[mini_sentence_i]
|
||
mini_sentence = cache_sent + mini_sentence
|
||
mini_sentence_id = np.concatenate(
|
||
(cache_sent_id, mini_sentence_id), axis=0, dtype="int32"
|
||
)
|
||
text_length = len(mini_sentence_id)
|
||
vad_mask = self.vad_mask(text_length, len(cache))[None, None, :, :].astype(np.float32)
|
||
data = {
|
||
"input": mini_sentence_id[None, :],
|
||
"text_lengths": np.array([text_length], dtype="int32"),
|
||
"vad_mask": vad_mask,
|
||
"sub_masks": vad_mask,
|
||
}
|
||
try:
|
||
outputs = self.infer(
|
||
data["input"], data["text_lengths"], data["vad_mask"], data["sub_masks"]
|
||
)
|
||
y = outputs[0]
|
||
punctuations = np.argmax(y, axis=-1)[0]
|
||
assert punctuations.size == len(mini_sentence)
|
||
except ONNXRuntimeError:
|
||
logging.warning("error")
|
||
|
||
# Search for the last Period/QuestionMark as cache
|
||
if mini_sentence_i < len(mini_sentences) - 1:
|
||
sentenceEnd = -1
|
||
last_comma_index = -1
|
||
for i in range(len(punctuations) - 2, 1, -1):
|
||
if (
|
||
self.punc_list[punctuations[i]] == "。"
|
||
or self.punc_list[punctuations[i]] == "?"
|
||
):
|
||
sentenceEnd = i
|
||
break
|
||
if last_comma_index < 0 and self.punc_list[punctuations[i]] == ",":
|
||
last_comma_index = i
|
||
|
||
if (
|
||
sentenceEnd < 0
|
||
and len(mini_sentence) > cache_pop_trigger_limit
|
||
and last_comma_index >= 0
|
||
):
|
||
# The sentence it too long, cut off at a comma.
|
||
sentenceEnd = last_comma_index
|
||
punctuations[sentenceEnd] = self.period
|
||
cache_sent = mini_sentence[sentenceEnd + 1 :]
|
||
cache_sent_id = mini_sentence_id[sentenceEnd + 1 :]
|
||
mini_sentence = mini_sentence[0 : sentenceEnd + 1]
|
||
punctuations = punctuations[0 : sentenceEnd + 1]
|
||
|
||
punctuations_np = [int(x) for x in punctuations]
|
||
new_mini_sentence_punc += punctuations_np
|
||
sentence_punc_list += [self.punc_list[int(x)] for x in punctuations_np]
|
||
sentence_words_list += mini_sentence
|
||
|
||
assert len(sentence_punc_list) == len(sentence_words_list)
|
||
words_with_punc = []
|
||
sentence_punc_list_out = []
|
||
for i in range(0, len(sentence_words_list)):
|
||
if i > 0:
|
||
if (
|
||
len(sentence_words_list[i][0].encode()) == 1
|
||
and len(sentence_words_list[i - 1][-1].encode()) == 1
|
||
):
|
||
sentence_words_list[i] = " " + sentence_words_list[i]
|
||
if skip_num < len(cache):
|
||
skip_num += 1
|
||
else:
|
||
words_with_punc.append(sentence_words_list[i])
|
||
if skip_num >= len(cache):
|
||
sentence_punc_list_out.append(sentence_punc_list[i])
|
||
if sentence_punc_list[i] != "_":
|
||
words_with_punc.append(sentence_punc_list[i])
|
||
sentence_out = "".join(words_with_punc)
|
||
|
||
sentenceEnd = -1
|
||
for i in range(len(sentence_punc_list) - 2, 1, -1):
|
||
if sentence_punc_list[i] == "。" or sentence_punc_list[i] == "?":
|
||
sentenceEnd = i
|
||
break
|
||
cache_out = sentence_words_list[sentenceEnd + 1 :]
|
||
if sentence_out[-1] in self.punc_list:
|
||
sentence_out = sentence_out[:-1]
|
||
sentence_punc_list_out[-1] = "_"
|
||
param_dict[cache_key] = cache_out
|
||
return sentence_out, sentence_punc_list_out, cache_out
|
||
|
||
def vad_mask(self, size, vad_pos, dtype=bool):
|
||
"""Create mask for decoder self-attention.
|
||
|
||
:param int size: size of mask
|
||
:param int vad_pos: index of vad index
|
||
:param torch.dtype dtype: result dtype
|
||
:rtype: torch.Tensor (B, Lmax, Lmax)
|
||
"""
|
||
ret = np.ones((size, size), dtype=dtype)
|
||
if vad_pos <= 0 or vad_pos >= size:
|
||
return ret
|
||
sub_corner = np.zeros((vad_pos - 1, size - vad_pos), dtype=dtype)
|
||
ret[0 : vad_pos - 1, vad_pos:] = sub_corner
|
||
return ret
|
||
|
||
def infer(
|
||
self, feats: np.ndarray, feats_len: np.ndarray, vad_mask: np.ndarray, sub_masks: np.ndarray
|
||
) -> Tuple[np.ndarray, np.ndarray]:
|
||
outputs = self.ort_infer([feats, feats_len, vad_mask, sub_masks])
|
||
return outputs
|