FunASR/runtime/python/onnxruntime/funasr_onnx/paraformer_bin.py

429 lines
18 KiB
Python

# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import os.path
from pathlib import Path
from typing import List, Union, Tuple
import json
import copy
import librosa
import numpy as np
from .utils.utils import (
CharTokenizer,
Hypothesis,
ONNXRuntimeError,
OrtInferSession,
TokenIDConverter,
get_logger,
read_yaml,
)
from .utils.postprocess_utils import sentence_postprocess, sentence_postprocess_sentencepiece
from .utils.frontend import WavFrontend
from .utils.timestamp_utils import time_stamp_lfr6_onnx
from .utils.utils import pad_list
logging = get_logger()
class Paraformer:
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition
https://arxiv.org/abs/2206.08317
"""
def __init__(
self,
model_dir: Union[str, Path] = None,
batch_size: int = 1,
device_id: Union[str, int] = "-1",
plot_timestamp_to: str = "",
quantize: bool = False,
intra_op_num_threads: int = 4,
cache_dir: str = None,
**kwargs,
):
if not Path(model_dir).exists():
try:
from modelscope.hub.snapshot_download import snapshot_download
except:
raise "You are exporting model from modelscope, please install modelscope and try it again. To install modelscope, you could:\n" "\npip3 install -U modelscope\n" "For the users in China, you could install with the command:\n" "\npip3 install -U modelscope -i https://mirror.sjtu.edu.cn/pypi/web/simple"
try:
model_dir = snapshot_download(model_dir, cache_dir=cache_dir)
except:
raise "model_dir must be model_name in modelscope or local path downloaded from modelscope, but is {}".format(
model_dir
)
model_file = os.path.join(model_dir, "model.onnx")
if quantize:
model_file = os.path.join(model_dir, "model_quant.onnx")
if not os.path.exists(model_file):
print(".onnx is not exist, begin to export onnx")
try:
from funasr import AutoModel
except:
raise "You are exporting onnx, please install funasr and try it again. To install funasr, you could:\n" "\npip3 install -U funasr\n" "For the users in China, you could install with the command:\n" "\npip3 install -U funasr -i https://mirror.sjtu.edu.cn/pypi/web/simple"
model = AutoModel(model=model_dir)
model_dir = model.export(type="onnx", quantize=quantize, **kwargs)
config_file = os.path.join(model_dir, "config.yaml")
cmvn_file = os.path.join(model_dir, "am.mvn")
config = read_yaml(config_file)
token_list = os.path.join(model_dir, "tokens.json")
with open(token_list, "r", encoding="utf-8") as f:
token_list = json.load(f)
self.converter = TokenIDConverter(token_list)
self.tokenizer = CharTokenizer()
self.frontend = WavFrontend(cmvn_file=cmvn_file, **config["frontend_conf"])
self.ort_infer = OrtInferSession(
model_file, device_id, intra_op_num_threads=intra_op_num_threads
)
self.batch_size = batch_size
self.plot_timestamp_to = plot_timestamp_to
if "predictor_bias" in config["model_conf"].keys():
self.pred_bias = config["model_conf"]["predictor_bias"]
else:
self.pred_bias = 0
if "lang" in config:
self.language = config["lang"]
else:
self.language = None
def __call__(self, wav_content: Union[str, np.ndarray, List[str]], **kwargs) -> List:
waveform_list = self.load_data(wav_content, self.frontend.opts.frame_opts.samp_freq)
waveform_nums = len(waveform_list)
asr_res = []
for beg_idx in range(0, waveform_nums, self.batch_size):
end_idx = min(waveform_nums, beg_idx + self.batch_size)
feats, feats_len = self.extract_feat(waveform_list[beg_idx:end_idx])
try:
outputs = self.infer(feats, feats_len)
am_scores, valid_token_lens = outputs[0], outputs[1]
if len(outputs) == 4:
# for BiCifParaformer Inference
us_alphas, us_peaks = outputs[2], outputs[3]
else:
us_alphas, us_peaks = None, None
except ONNXRuntimeError:
# logging.warning(traceback.format_exc())
logging.warning("input wav is silence or noise")
preds = [""]
else:
preds = self.decode(am_scores, valid_token_lens)
if us_peaks is None:
for pred in preds:
if self.language == "en-bpe":
pred = sentence_postprocess_sentencepiece(pred)
else:
pred = sentence_postprocess(pred)
asr_res.append({"preds": pred})
else:
for pred, us_peaks_ in zip(preds, us_peaks):
raw_tokens = pred
timestamp, timestamp_raw = time_stamp_lfr6_onnx(
us_peaks_, copy.copy(raw_tokens)
)
text_proc, timestamp_proc, _ = sentence_postprocess(
raw_tokens, timestamp_raw
)
# logging.warning(timestamp)
if len(self.plot_timestamp_to):
self.plot_wave_timestamp(
waveform_list[0], timestamp, self.plot_timestamp_to
)
asr_res.append(
{
"preds": text_proc,
"timestamp": timestamp_proc,
"raw_tokens": raw_tokens,
}
)
return asr_res
def plot_wave_timestamp(self, wav, text_timestamp, dest):
# TODO: Plot the wav and timestamp results with matplotlib
import matplotlib
matplotlib.use("Agg")
matplotlib.rc(
"font", family="Alibaba PuHuiTi"
) # set it to a font that your system supports
import matplotlib.pyplot as plt
fig, ax1 = plt.subplots(figsize=(11, 3.5), dpi=320)
ax2 = ax1.twinx()
ax2.set_ylim([0, 2.0])
# plot waveform
ax1.set_ylim([-0.3, 0.3])
time = np.arange(wav.shape[0]) / 16000
ax1.plot(time, wav / wav.max() * 0.3, color="gray", alpha=0.4)
# plot lines and text
for char, start, end in text_timestamp:
ax1.vlines(start, -0.3, 0.3, ls="--")
ax1.vlines(end, -0.3, 0.3, ls="--")
x_adj = 0.045 if char != "<sil>" else 0.12
ax1.text((start + end) * 0.5 - x_adj, 0, char)
# plt.legend()
plotname = "{}/timestamp.png".format(dest)
plt.savefig(plotname, bbox_inches="tight")
def load_data(self, wav_content: Union[str, np.ndarray, List[str]], fs: int = None) -> List:
def load_wav(path: str) -> np.ndarray:
waveform, _ = librosa.load(path, sr=fs)
return waveform
if isinstance(wav_content, np.ndarray):
return [wav_content]
if isinstance(wav_content, str):
return [load_wav(wav_content)]
if isinstance(wav_content, list):
return [load_wav(path) for path in wav_content]
raise TypeError(f"The type of {wav_content} is not in [str, np.ndarray, list]")
def extract_feat(self, waveform_list: List[np.ndarray]) -> Tuple[np.ndarray, np.ndarray]:
feats, feats_len = [], []
for waveform in waveform_list:
speech, _ = self.frontend.fbank(waveform)
feat, feat_len = self.frontend.lfr_cmvn(speech)
feats.append(feat)
feats_len.append(feat_len)
feats = self.pad_feats(feats, np.max(feats_len))
feats_len = np.array(feats_len).astype(np.int32)
return feats, feats_len
@staticmethod
def pad_feats(feats: List[np.ndarray], max_feat_len: int) -> np.ndarray:
def pad_feat(feat: np.ndarray, cur_len: int) -> np.ndarray:
pad_width = ((0, max_feat_len - cur_len), (0, 0))
return np.pad(feat, pad_width, "constant", constant_values=0)
feat_res = [pad_feat(feat, feat.shape[0]) for feat in feats]
feats = np.array(feat_res).astype(np.float32)
return feats
def infer(self, feats: np.ndarray, feats_len: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
outputs = self.ort_infer([feats, feats_len])
return outputs
def decode(self, am_scores: np.ndarray, token_nums: int) -> List[str]:
return [
self.decode_one(am_score, token_num)
for am_score, token_num in zip(am_scores, token_nums)
]
def decode_one(self, am_score: np.ndarray, valid_token_num: int) -> List[str]:
yseq = am_score.argmax(axis=-1)
score = am_score.max(axis=-1)
score = np.sum(score, axis=-1)
# pad with mask tokens to ensure compatibility with sos/eos tokens
# asr_model.sos:1 asr_model.eos:2
yseq = np.array([1] + yseq.tolist() + [2])
hyp = Hypothesis(yseq=yseq, score=score)
# remove sos/eos and get results
last_pos = -1
token_int = hyp.yseq[1:last_pos].tolist()
# remove blank symbol id, which is assumed to be 0
token_int = list(filter(lambda x: x not in (0, 2), token_int))
# Change integer-ids to tokens
token = self.converter.ids2tokens(token_int)
token = token[: valid_token_num - self.pred_bias]
# texts = sentence_postprocess(token)
return token
class ContextualParaformer(Paraformer):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition
https://arxiv.org/abs/2206.08317
"""
def __init__(
self,
model_dir: Union[str, Path] = None,
batch_size: int = 1,
device_id: Union[str, int] = "-1",
plot_timestamp_to: str = "",
quantize: bool = False,
intra_op_num_threads: int = 4,
cache_dir: str = None,
**kwargs,
):
if not Path(model_dir).exists():
try:
from modelscope.hub.snapshot_download import snapshot_download
except:
raise "You are exporting model from modelscope, please install modelscope and try it again. To install modelscope, you could:\n" "\npip3 install -U modelscope\n" "For the users in China, you could install with the command:\n" "\npip3 install -U modelscope -i https://mirror.sjtu.edu.cn/pypi/web/simple"
try:
model_dir = snapshot_download(model_dir, cache_dir=cache_dir)
except:
raise "model_dir must be model_name in modelscope or local path downloaded from modelscope, but is {}".format(
model_dir
)
if quantize:
model_bb_file = os.path.join(model_dir, "model_quant.onnx")
model_eb_file = os.path.join(model_dir, "model_eb_quant.onnx")
else:
model_bb_file = os.path.join(model_dir, "model.onnx")
model_eb_file = os.path.join(model_dir, "model_eb.onnx")
if not (os.path.exists(model_eb_file) and os.path.exists(model_bb_file)):
print(".onnx is not exist, begin to export onnx")
try:
from funasr import AutoModel
except:
raise "You are exporting onnx, please install funasr and try it again. To install funasr, you could:\n" "\npip3 install -U funasr\n" "For the users in China, you could install with the command:\n" "\npip3 install -U funasr -i https://mirror.sjtu.edu.cn/pypi/web/simple"
model = AutoModel(model=model_dir)
model_dir = model.export(type="onnx", quantize=quantize, **kwargs)
config_file = os.path.join(model_dir, "config.yaml")
cmvn_file = os.path.join(model_dir, "am.mvn")
config = read_yaml(config_file)
token_list = os.path.join(model_dir, "tokens.json")
with open(token_list, "r", encoding="utf-8") as f:
token_list = json.load(f)
# revert token_list into vocab dict
self.vocab = {}
for i, token in enumerate(token_list):
self.vocab[token] = i
self.converter = TokenIDConverter(token_list)
self.tokenizer = CharTokenizer()
self.frontend = WavFrontend(cmvn_file=cmvn_file, **config["frontend_conf"])
self.ort_infer_bb = OrtInferSession(
model_bb_file, device_id, intra_op_num_threads=intra_op_num_threads
)
self.ort_infer_eb = OrtInferSession(
model_eb_file, device_id, intra_op_num_threads=intra_op_num_threads
)
self.batch_size = batch_size
self.plot_timestamp_to = plot_timestamp_to
if "predictor_bias" in config["model_conf"].keys():
self.pred_bias = config["model_conf"]["predictor_bias"]
else:
self.pred_bias = 0
def __call__(
self, wav_content: Union[str, np.ndarray, List[str]], hotwords: str, **kwargs
) -> List:
# make hotword list
hotwords, hotwords_length = self.proc_hotword(hotwords)
# import pdb; pdb.set_trace()
[bias_embed] = self.eb_infer(hotwords, hotwords_length)
# index from bias_embed
bias_embed = bias_embed.transpose(1, 0, 2)
_ind = np.arange(0, len(hotwords)).tolist()
bias_embed = bias_embed[_ind, hotwords_length.tolist()]
waveform_list = self.load_data(wav_content, self.frontend.opts.frame_opts.samp_freq)
waveform_nums = len(waveform_list)
asr_res = []
for beg_idx in range(0, waveform_nums, self.batch_size):
end_idx = min(waveform_nums, beg_idx + self.batch_size)
feats, feats_len = self.extract_feat(waveform_list[beg_idx:end_idx])
bias_embed = np.expand_dims(bias_embed, axis=0)
bias_embed = np.repeat(bias_embed, feats.shape[0], axis=0)
try:
outputs = self.bb_infer(feats, feats_len, bias_embed)
am_scores, valid_token_lens = outputs[0], outputs[1]
except ONNXRuntimeError:
# logging.warning(traceback.format_exc())
logging.warning("input wav is silence or noise")
preds = [""]
else:
preds = self.decode(am_scores, valid_token_lens)
for pred in preds:
pred = sentence_postprocess(pred)
asr_res.append({"preds": pred})
return asr_res
def proc_hotword(self, hotwords):
hotwords = hotwords.split(" ")
hotwords_length = [len(i) - 1 for i in hotwords]
hotwords_length.append(0)
hotwords_length = np.array(hotwords_length)
# hotwords.append('<s>')
def word_map(word):
hotwords = []
for c in word:
if c not in self.vocab.keys():
hotwords.append(8403)
logging.warning(
"oov character {} found in hotword {}, replaced by <unk>".format(c, word)
)
else:
hotwords.append(self.vocab[c])
return np.array(hotwords)
hotword_int = [word_map(i) for i in hotwords]
# import pdb; pdb.set_trace()
hotword_int.append(np.array([1]))
hotwords = pad_list(hotword_int, pad_value=0, max_len=10)
# import pdb; pdb.set_trace()
return hotwords, hotwords_length
def bb_infer(
self, feats: np.ndarray, feats_len: np.ndarray, bias_embed
) -> Tuple[np.ndarray, np.ndarray]:
outputs = self.ort_infer_bb([feats, feats_len, bias_embed])
return outputs
def eb_infer(self, hotwords, hotwords_length):
outputs = self.ort_infer_eb([hotwords.astype(np.int32), hotwords_length.astype(np.int32)])
return outputs
def decode(self, am_scores: np.ndarray, token_nums: int) -> List[str]:
return [
self.decode_one(am_score, token_num)
for am_score, token_num in zip(am_scores, token_nums)
]
def decode_one(self, am_score: np.ndarray, valid_token_num: int) -> List[str]:
yseq = am_score.argmax(axis=-1)
score = am_score.max(axis=-1)
score = np.sum(score, axis=-1)
# pad with mask tokens to ensure compatibility with sos/eos tokens
# asr_model.sos:1 asr_model.eos:2
yseq = np.array([1] + yseq.tolist() + [2])
hyp = Hypothesis(yseq=yseq, score=score)
# remove sos/eos and get results
last_pos = -1
token_int = hyp.yseq[1:last_pos].tolist()
# remove blank symbol id, which is assumed to be 0
token_int = list(filter(lambda x: x not in (0, 2), token_int))
# Change integer-ids to tokens
token = self.converter.ids2tokens(token_int)
token = token[: valid_token_num - self.pred_bias]
# texts = sentence_postprocess(token)
return token
class SeacoParaformer(ContextualParaformer):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# no difference with contextual_paraformer in method of calling onnx models