FunASR/examples/aishell/paraformer/utils/extract_embeds.py

50 lines
1.5 KiB
Python

from transformers import AutoTokenizer, AutoModel, pipeline
import numpy as np
import sys
import os
import torch
from kaldiio import WriteHelper
import re
text_file_json = sys.argv[1]
out_ark = sys.argv[2]
out_scp = sys.argv[3]
out_shape = sys.argv[4]
device = int(sys.argv[5])
model_path = sys.argv[6]
model = AutoModel.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
extractor = pipeline(task="feature-extraction", model=model, tokenizer=tokenizer, device=device)
with open(text_file_json, "r") as f:
js = f.readlines()
f_shape = open(out_shape, "w")
with WriteHelper("ark,scp:{},{}".format(out_ark, out_scp)) as writer:
with torch.no_grad():
for idx, line in enumerate(js):
id, tokens = line.strip().split(" ", 1)
tokens = re.sub(" ", "", tokens.strip())
tokens = " ".join([j for j in tokens])
token_num = len(tokens.split(" "))
outputs = extractor(tokens)
outputs = np.array(outputs)
embeds = outputs[0, 1:-1, :]
token_num_embeds, dim = embeds.shape
if token_num == token_num_embeds:
writer(id, embeds)
shape_line = "{} {},{}\n".format(id, token_num_embeds, dim)
f_shape.write(shape_line)
else:
print(
"{}, size has changed, {}, {}, {}".format(
id, token_num, token_num_embeds, tokens
)
)
f_shape.close()