FunASR/runtime/triton_gpu/client/speech_client.py

141 lines
5.5 KiB
Python

# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from tritonclient.utils import np_to_triton_dtype
import numpy as np
import math
import soundfile as sf
class OfflineSpeechClient(object):
def __init__(self, triton_client, model_name, protocol_client, args):
self.triton_client = triton_client
self.protocol_client = protocol_client
self.model_name = model_name
def recognize(self, wav_file, idx=0):
waveform, sample_rate = sf.read(wav_file)
samples = np.array([waveform], dtype=np.float32)
lengths = np.array([[len(waveform)]], dtype=np.int32)
# better pad waveform to nearest length here
# target_seconds = math.cel(len(waveform) / sample_rate)
# target_samples = np.zeros([1, target_seconds * sample_rate])
# target_samples[0][0: len(waveform)] = waveform
# samples = target_samples
sequence_id = 10086 + idx
result = ""
inputs = [
self.protocol_client.InferInput(
"WAV", samples.shape, np_to_triton_dtype(samples.dtype)
),
self.protocol_client.InferInput(
"WAV_LENS", lengths.shape, np_to_triton_dtype(lengths.dtype)
),
]
inputs[0].set_data_from_numpy(samples)
inputs[1].set_data_from_numpy(lengths)
outputs = [self.protocol_client.InferRequestedOutput("TRANSCRIPTS")]
response = self.triton_client.infer(
self.model_name,
inputs,
request_id=str(sequence_id),
outputs=outputs,
)
result = response.as_numpy("TRANSCRIPTS")[0].decode("utf-8")
return [result]
class StreamingSpeechClient(object):
def __init__(self, triton_client, model_name, protocol_client, args):
self.triton_client = triton_client
self.protocol_client = protocol_client
self.model_name = model_name
chunk_size = args.chunk_size
subsampling = args.subsampling
context = args.context
frame_shift_ms = args.frame_shift_ms
frame_length_ms = args.frame_length_ms
# for the first chunk
# we need additional frames to generate
# the exact first chunk length frames
# since the subsampling will look ahead several frames
first_chunk_length = (chunk_size - 1) * subsampling + context
add_frames = math.ceil((frame_length_ms - frame_shift_ms) / frame_shift_ms)
first_chunk_ms = (first_chunk_length + add_frames) * frame_shift_ms
other_chunk_ms = chunk_size * subsampling * frame_shift_ms
self.first_chunk_in_secs = first_chunk_ms / 1000
self.other_chunk_in_secs = other_chunk_ms / 1000
def recognize(self, wav_file, idx=0):
waveform, sample_rate = sf.read(wav_file)
wav_segs = []
i = 0
while i < len(waveform):
if i == 0:
stride = int(self.first_chunk_in_secs * sample_rate)
wav_segs.append(waveform[i : i + stride])
else:
stride = int(self.other_chunk_in_secs * sample_rate)
wav_segs.append(waveform[i : i + stride])
i += len(wav_segs[-1])
sequence_id = idx + 10086
# simulate streaming
for idx, seg in enumerate(wav_segs):
chunk_len = len(seg)
if idx == 0:
chunk_samples = int(self.first_chunk_in_secs * sample_rate)
expect_input = np.zeros((1, chunk_samples), dtype=np.float32)
else:
chunk_samples = int(self.other_chunk_in_secs * sample_rate)
expect_input = np.zeros((1, chunk_samples), dtype=np.float32)
expect_input[0][0:chunk_len] = seg
input0_data = expect_input
input1_data = np.array([[chunk_len]], dtype=np.int32)
inputs = [
self.protocol_client.InferInput(
"WAV",
input0_data.shape,
np_to_triton_dtype(input0_data.dtype),
),
self.protocol_client.InferInput(
"WAV_LENS",
input1_data.shape,
np_to_triton_dtype(input1_data.dtype),
),
]
inputs[0].set_data_from_numpy(input0_data)
inputs[1].set_data_from_numpy(input1_data)
outputs = [self.protocol_client.InferRequestedOutput("TRANSCRIPTS")]
end = False
if idx == len(wav_segs) - 1:
end = True
response = self.triton_client.infer(
self.model_name,
inputs,
outputs=outputs,
sequence_id=sequence_id,
sequence_start=idx == 0,
sequence_end=end,
)
idx += 1
result = response.as_numpy("TRANSCRIPTS")[0].decode("utf-8")
print("Get response from {}th chunk: {}".format(idx, result))
return [result]