FunASR/runtime/python/onnxruntime/funasr_onnx/utils/timestamp_utils.py

67 lines
2.9 KiB
Python

# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import numpy as np
def time_stamp_lfr6_onnx(us_cif_peak, char_list, begin_time=0.0, total_offset=-1.5):
if not len(char_list):
return []
START_END_THRESHOLD = 5
MAX_TOKEN_DURATION = 30
TIME_RATE = 10.0 * 6 / 1000 / 3 # 3 times upsampled
cif_peak = us_cif_peak.reshape(-1)
num_frames = cif_peak.shape[-1]
if char_list[-1] == "</s>":
char_list = char_list[:-1]
# char_list = [i for i in text]
timestamp_list = []
new_char_list = []
# for bicif model trained with large data, cif2 actually fires when a character starts
# so treat the frames between two peaks as the duration of the former token
fire_place = np.where(cif_peak > 1.0 - 1e-4)[0] + total_offset # np format
num_peak = len(fire_place)
assert num_peak == len(char_list) + 1 # number of peaks is supposed to be number of tokens + 1
# begin silence
if fire_place[0] > START_END_THRESHOLD:
# char_list.insert(0, '<sil>')
timestamp_list.append([0.0, fire_place[0] * TIME_RATE])
new_char_list.append("<sil>")
# tokens timestamp
for i in range(len(fire_place) - 1):
new_char_list.append(char_list[i])
if (
i == len(fire_place) - 2
or MAX_TOKEN_DURATION < 0
or fire_place[i + 1] - fire_place[i] < MAX_TOKEN_DURATION
):
timestamp_list.append([fire_place[i] * TIME_RATE, fire_place[i + 1] * TIME_RATE])
else:
# cut the duration to token and sil of the 0-weight frames last long
_split = fire_place[i] + MAX_TOKEN_DURATION
timestamp_list.append([fire_place[i] * TIME_RATE, _split * TIME_RATE])
timestamp_list.append([_split * TIME_RATE, fire_place[i + 1] * TIME_RATE])
new_char_list.append("<sil>")
# tail token and end silence
if num_frames - fire_place[-1] > START_END_THRESHOLD:
_end = (num_frames + fire_place[-1]) / 2
timestamp_list[-1][1] = _end * TIME_RATE
timestamp_list.append([_end * TIME_RATE, num_frames * TIME_RATE])
new_char_list.append("<sil>")
else:
timestamp_list[-1][1] = num_frames * TIME_RATE
if begin_time: # add offset time in model with vad
for i in range(len(timestamp_list)):
timestamp_list[i][0] = timestamp_list[i][0] + begin_time / 1000.0
timestamp_list[i][1] = timestamp_list[i][1] + begin_time / 1000.0
assert len(new_char_list) == len(timestamp_list)
res_str = ""
for char, timestamp in zip(new_char_list, timestamp_list):
res_str += "{} {} {};".format(char, timestamp[0], timestamp[1])
res = []
for char, timestamp in zip(new_char_list, timestamp_list):
if char != "<sil>":
res.append([int(timestamp[0] * 1000), int(timestamp[1] * 1000)])
return res_str, res