FunASR/runtime/python/libtorch/funasr_torch/utils/utils.py

158 lines
4.6 KiB
Python

# -*- encoding: utf-8 -*-
import functools
import logging
import pickle
from pathlib import Path
from typing import Any, Dict, Iterable, List, NamedTuple, Set, Tuple, Union
import numpy as np
import yaml
import warnings
root_dir = Path(__file__).resolve().parent
logger_initialized = {}
class TokenIDConverter:
def __init__(
self,
token_list: Union[List, str],
):
self.token_list = token_list
self.unk_symbol = token_list[-1]
self.token2id = {v: i for i, v in enumerate(self.token_list)}
self.unk_id = self.token2id[self.unk_symbol]
def get_num_vocabulary_size(self) -> int:
return len(self.token_list)
def ids2tokens(self, integers: Union[np.ndarray, Iterable[int]]) -> List[str]:
if isinstance(integers, np.ndarray) and integers.ndim != 1:
raise TokenIDConverterError(f"Must be 1 dim ndarray, but got {integers.ndim}")
return [self.token_list[i] for i in integers]
def tokens2ids(self, tokens: Iterable[str]) -> List[int]:
return [self.token2id.get(i, self.unk_id) for i in tokens]
class CharTokenizer:
def __init__(
self,
symbol_value: Union[Path, str, Iterable[str]] = None,
space_symbol: str = "<space>",
remove_non_linguistic_symbols: bool = False,
):
self.space_symbol = space_symbol
self.non_linguistic_symbols = self.load_symbols(symbol_value)
self.remove_non_linguistic_symbols = remove_non_linguistic_symbols
@staticmethod
def load_symbols(value: Union[Path, str, Iterable[str]] = None) -> Set:
if value is None:
return set()
if isinstance(value, Iterable[str]):
return set(value)
file_path = Path(value)
if not file_path.exists():
logging.warning("%s doesn't exist.", file_path)
return set()
with file_path.open("r", encoding="utf-8") as f:
return set(line.rstrip() for line in f)
def text2tokens(self, line: Union[str, list]) -> List[str]:
tokens = []
while len(line) != 0:
for w in self.non_linguistic_symbols:
if line.startswith(w):
if not self.remove_non_linguistic_symbols:
tokens.append(line[: len(w)])
line = line[len(w) :]
break
else:
t = line[0]
if t == " ":
t = "<space>"
tokens.append(t)
line = line[1:]
return tokens
def tokens2text(self, tokens: Iterable[str]) -> str:
tokens = [t if t != self.space_symbol else " " for t in tokens]
return "".join(tokens)
def __repr__(self):
return (
f"{self.__class__.__name__}("
f'space_symbol="{self.space_symbol}"'
f'non_linguistic_symbols="{self.non_linguistic_symbols}"'
f")"
)
class Hypothesis(NamedTuple):
"""Hypothesis data type."""
yseq: np.ndarray
score: Union[float, np.ndarray] = 0
scores: Dict[str, Union[float, np.ndarray]] = dict()
states: Dict[str, Any] = dict()
def asdict(self) -> dict:
"""Convert data to JSON-friendly dict."""
return self._replace(
yseq=self.yseq.tolist(),
score=float(self.score),
scores={k: float(v) for k, v in self.scores.items()},
)._asdict()
def read_yaml(yaml_path: Union[str, Path]) -> Dict:
if not Path(yaml_path).exists():
raise FileExistsError(f"The {yaml_path} does not exist.")
with open(str(yaml_path), "rb") as f:
data = yaml.load(f, Loader=yaml.Loader)
return data
@functools.lru_cache()
def get_logger(name="funasr_torch"):
"""Initialize and get a logger by name.
If the logger has not been initialized, this method will initialize the
logger by adding one or two handlers, otherwise the initialized logger will
be directly returned. During initialization, a StreamHandler will always be
added.
Args:
name (str): Logger name.
Returns:
logging.Logger: The expected logger.
"""
logger = logging.getLogger(name)
if name in logger_initialized:
return logger
for logger_name in logger_initialized:
if name.startswith(logger_name):
return logger
formatter = logging.Formatter(
"[%(asctime)s] %(name)s %(levelname)s: %(message)s", datefmt="%Y/%m/%d %H:%M:%S"
)
sh = logging.StreamHandler()
sh.setFormatter(formatter)
logger.addHandler(sh)
logger_initialized[name] = True
logger.propagate = False
return logger