194 lines
6.7 KiB
Python
194 lines
6.7 KiB
Python
# -*- encoding: utf-8 -*-
|
|
from pathlib import Path
|
|
from typing import Any, Dict, Iterable, List, NamedTuple, Set, Tuple, Union
|
|
|
|
import numpy as np
|
|
import kaldi_native_fbank as knf
|
|
|
|
root_dir = Path(__file__).resolve().parent
|
|
|
|
logger_initialized = {}
|
|
|
|
|
|
class WavFrontend:
|
|
"""Conventional frontend structure for ASR."""
|
|
|
|
def __init__(
|
|
self,
|
|
cmvn_file: str = None,
|
|
fs: int = 16000,
|
|
window: str = "hamming",
|
|
n_mels: int = 80,
|
|
frame_length: int = 25,
|
|
frame_shift: int = 10,
|
|
lfr_m: int = 1,
|
|
lfr_n: int = 1,
|
|
dither: float = 1.0,
|
|
**kwargs,
|
|
) -> None:
|
|
|
|
opts = knf.FbankOptions()
|
|
opts.frame_opts.samp_freq = fs
|
|
opts.frame_opts.dither = dither
|
|
opts.frame_opts.window_type = window
|
|
opts.frame_opts.frame_shift_ms = float(frame_shift)
|
|
opts.frame_opts.frame_length_ms = float(frame_length)
|
|
opts.mel_opts.num_bins = n_mels
|
|
opts.energy_floor = 0
|
|
opts.frame_opts.snip_edges = True
|
|
opts.mel_opts.debug_mel = False
|
|
self.opts = opts
|
|
|
|
self.lfr_m = lfr_m
|
|
self.lfr_n = lfr_n
|
|
self.cmvn_file = cmvn_file
|
|
|
|
if self.cmvn_file:
|
|
self.cmvn = self.load_cmvn()
|
|
self.fbank_fn = None
|
|
self.fbank_beg_idx = 0
|
|
self.reset_status()
|
|
|
|
def fbank(self, waveform: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
|
waveform = waveform * (1 << 15)
|
|
self.fbank_fn = knf.OnlineFbank(self.opts)
|
|
self.fbank_fn.accept_waveform(self.opts.frame_opts.samp_freq, waveform.tolist())
|
|
frames = self.fbank_fn.num_frames_ready
|
|
mat = np.empty([frames, self.opts.mel_opts.num_bins])
|
|
for i in range(frames):
|
|
mat[i, :] = self.fbank_fn.get_frame(i)
|
|
feat = mat.astype(np.float32)
|
|
feat_len = np.array(mat.shape[0]).astype(np.int32)
|
|
return feat, feat_len
|
|
|
|
def fbank_online(self, waveform: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
|
waveform = waveform * (1 << 15)
|
|
# self.fbank_fn = knf.OnlineFbank(self.opts)
|
|
self.fbank_fn.accept_waveform(self.opts.frame_opts.samp_freq, waveform.tolist())
|
|
frames = self.fbank_fn.num_frames_ready
|
|
mat = np.empty([frames, self.opts.mel_opts.num_bins])
|
|
for i in range(self.fbank_beg_idx, frames):
|
|
mat[i, :] = self.fbank_fn.get_frame(i)
|
|
# self.fbank_beg_idx += (frames-self.fbank_beg_idx)
|
|
feat = mat.astype(np.float32)
|
|
feat_len = np.array(mat.shape[0]).astype(np.int32)
|
|
return feat, feat_len
|
|
|
|
def reset_status(self):
|
|
self.fbank_fn = knf.OnlineFbank(self.opts)
|
|
self.fbank_beg_idx = 0
|
|
|
|
def lfr_cmvn(self, feat: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
|
if self.lfr_m != 1 or self.lfr_n != 1:
|
|
feat = self.apply_lfr(feat, self.lfr_m, self.lfr_n)
|
|
|
|
if self.cmvn_file:
|
|
feat = self.apply_cmvn(feat)
|
|
|
|
feat_len = np.array(feat.shape[0]).astype(np.int32)
|
|
return feat, feat_len
|
|
|
|
@staticmethod
|
|
def apply_lfr(inputs: np.ndarray, lfr_m: int, lfr_n: int) -> np.ndarray:
|
|
LFR_inputs = []
|
|
|
|
T = inputs.shape[0]
|
|
T_lfr = int(np.ceil(T / lfr_n))
|
|
left_padding = np.tile(inputs[0], ((lfr_m - 1) // 2, 1))
|
|
inputs = np.vstack((left_padding, inputs))
|
|
T = T + (lfr_m - 1) // 2
|
|
for i in range(T_lfr):
|
|
if lfr_m <= T - i * lfr_n:
|
|
LFR_inputs.append((inputs[i * lfr_n : i * lfr_n + lfr_m]).reshape(1, -1))
|
|
else:
|
|
# process last LFR frame
|
|
num_padding = lfr_m - (T - i * lfr_n)
|
|
frame = inputs[i * lfr_n :].reshape(-1)
|
|
for _ in range(num_padding):
|
|
frame = np.hstack((frame, inputs[-1]))
|
|
|
|
LFR_inputs.append(frame)
|
|
LFR_outputs = np.vstack(LFR_inputs).astype(np.float32)
|
|
return LFR_outputs
|
|
|
|
def apply_cmvn(self, inputs: np.ndarray) -> np.ndarray:
|
|
"""
|
|
Apply CMVN with mvn data
|
|
"""
|
|
frame, dim = inputs.shape
|
|
means = np.tile(self.cmvn[0:1, :dim], (frame, 1))
|
|
vars = np.tile(self.cmvn[1:2, :dim], (frame, 1))
|
|
inputs = (inputs + means) * vars
|
|
return inputs
|
|
|
|
def load_cmvn(
|
|
self,
|
|
) -> np.ndarray:
|
|
with open(self.cmvn_file, "r", encoding="utf-8") as f:
|
|
lines = f.readlines()
|
|
|
|
means_list = []
|
|
vars_list = []
|
|
for i in range(len(lines)):
|
|
line_item = lines[i].split()
|
|
if line_item[0] == "<AddShift>":
|
|
line_item = lines[i + 1].split()
|
|
if line_item[0] == "<LearnRateCoef>":
|
|
add_shift_line = line_item[3 : (len(line_item) - 1)]
|
|
means_list = list(add_shift_line)
|
|
continue
|
|
elif line_item[0] == "<Rescale>":
|
|
line_item = lines[i + 1].split()
|
|
if line_item[0] == "<LearnRateCoef>":
|
|
rescale_line = line_item[3 : (len(line_item) - 1)]
|
|
vars_list = list(rescale_line)
|
|
continue
|
|
|
|
means = np.array(means_list).astype(np.float64)
|
|
vars = np.array(vars_list).astype(np.float64)
|
|
cmvn = np.array([means, vars])
|
|
return cmvn
|
|
|
|
|
|
def load_bytes(input):
|
|
middle_data = np.frombuffer(input, dtype=np.int16)
|
|
middle_data = np.asarray(middle_data)
|
|
if middle_data.dtype.kind not in "iu":
|
|
raise TypeError("'middle_data' must be an array of integers")
|
|
dtype = np.dtype("float32")
|
|
if dtype.kind != "f":
|
|
raise TypeError("'dtype' must be a floating point type")
|
|
|
|
i = np.iinfo(middle_data.dtype)
|
|
abs_max = 2 ** (i.bits - 1)
|
|
offset = i.min + abs_max
|
|
array = np.frombuffer((middle_data.astype(dtype) - offset) / abs_max, dtype=np.float32)
|
|
return array
|
|
|
|
|
|
def test():
|
|
path = "/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/example/asr_example.wav"
|
|
import librosa
|
|
|
|
cmvn_file = "/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/am.mvn"
|
|
config_file = "/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/config.yaml"
|
|
from funasr.runtime.python.onnxruntime.rapid_paraformer.utils.utils import read_yaml
|
|
|
|
config = read_yaml(config_file)
|
|
waveform, _ = librosa.load(path, sr=None)
|
|
frontend = WavFrontend(
|
|
cmvn_file=cmvn_file,
|
|
**config["frontend_conf"],
|
|
)
|
|
speech, _ = frontend.fbank_online(waveform) # 1d, (sample,), numpy
|
|
feat, feat_len = frontend.lfr_cmvn(
|
|
speech
|
|
) # 2d, (frame, 450), np.float32 -> torch, torch.from_numpy(), dtype, (1, frame, 450)
|
|
|
|
frontend.reset_status() # clear cache
|
|
return feat, feat_len
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test()
|