134 lines
4.8 KiB
Python
134 lines
4.8 KiB
Python
import argparse
|
|
import logging
|
|
import os
|
|
import uuid
|
|
|
|
import aiofiles
|
|
import ffmpeg
|
|
import uvicorn
|
|
from fastapi import FastAPI, File, UploadFile
|
|
from modelscope.utils.logger import get_logger
|
|
|
|
from funasr import AutoModel
|
|
|
|
logger = get_logger(log_level=logging.INFO)
|
|
logger.setLevel(logging.INFO)
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--host", type=str, default="0.0.0.0", required=False, help="host ip, localhost, 0.0.0.0"
|
|
)
|
|
parser.add_argument("--port", type=int, default=8000, required=False, help="server port")
|
|
parser.add_argument(
|
|
"--asr_model",
|
|
type=str,
|
|
default="paraformer-zh",
|
|
help="asr model from https://github.com/alibaba-damo-academy/FunASR?tab=readme-ov-file#model-zoo",
|
|
)
|
|
parser.add_argument("--asr_model_revision", type=str, default="v2.0.4", help="")
|
|
parser.add_argument(
|
|
"--vad_model",
|
|
type=str,
|
|
default="fsmn-vad",
|
|
help="vad model from https://github.com/alibaba-damo-academy/FunASR?tab=readme-ov-file#model-zoo",
|
|
)
|
|
parser.add_argument("--vad_model_revision", type=str, default="v2.0.4", help="")
|
|
parser.add_argument(
|
|
"--punc_model",
|
|
type=str,
|
|
default="ct-punc-c",
|
|
help="model from https://github.com/alibaba-damo-academy/FunASR?tab=readme-ov-file#model-zoo",
|
|
)
|
|
parser.add_argument("--punc_model_revision", type=str, default="v2.0.4", help="")
|
|
parser.add_argument("--ngpu", type=int, default=1, help="0 for cpu, 1 for gpu")
|
|
parser.add_argument("--device", type=str, default="cuda", help="cuda, cpu")
|
|
parser.add_argument("--ncpu", type=int, default=4, help="cpu cores")
|
|
parser.add_argument(
|
|
"--hotword_path",
|
|
type=str,
|
|
default="hotwords.txt",
|
|
help="hot word txt path, only the hot word model works",
|
|
)
|
|
parser.add_argument("--certfile", type=str, default=None, required=False, help="certfile for ssl")
|
|
parser.add_argument("--keyfile", type=str, default=None, required=False, help="keyfile for ssl")
|
|
parser.add_argument("--temp_dir", type=str, default="temp_dir/", required=False, help="temp dir")
|
|
args = parser.parse_args()
|
|
logger.info("----------- Configuration Arguments -----------")
|
|
for arg, value in vars(args).items():
|
|
logger.info("%s: %s" % (arg, value))
|
|
logger.info("------------------------------------------------")
|
|
|
|
os.makedirs(args.temp_dir, exist_ok=True)
|
|
|
|
logger.info("model loading")
|
|
# load funasr model
|
|
model = AutoModel(
|
|
model=args.asr_model,
|
|
model_revision=args.asr_model_revision,
|
|
vad_model=args.vad_model,
|
|
vad_model_revision=args.vad_model_revision,
|
|
punc_model=args.punc_model,
|
|
punc_model_revision=args.punc_model_revision,
|
|
ngpu=args.ngpu,
|
|
ncpu=args.ncpu,
|
|
device=args.device,
|
|
disable_pbar=True,
|
|
disable_log=True,
|
|
)
|
|
logger.info("loaded models!")
|
|
|
|
app = FastAPI(title="FunASR")
|
|
|
|
param_dict = {"sentence_timestamp": True, "batch_size_s": 300}
|
|
if args.hotword_path is not None and os.path.exists(args.hotword_path):
|
|
with open(args.hotword_path, "r", encoding="utf-8") as f:
|
|
lines = f.readlines()
|
|
lines = [line.strip() for line in lines]
|
|
hotword = " ".join(lines)
|
|
logger.info(f"热词:{hotword}")
|
|
param_dict["hotword"] = hotword
|
|
|
|
|
|
@app.post("/recognition")
|
|
async def api_recognition(audio: UploadFile = File(..., description="audio file")):
|
|
suffix = audio.filename.split(".")[-1]
|
|
audio_path = f"{args.temp_dir}/{str(uuid.uuid1())}.{suffix}"
|
|
async with aiofiles.open(audio_path, "wb") as out_file:
|
|
content = await audio.read()
|
|
await out_file.write(content)
|
|
try:
|
|
audio_bytes, _ = (
|
|
ffmpeg.input(audio_path, threads=0)
|
|
.output("-", format="s16le", acodec="pcm_s16le", ac=1, ar=16000)
|
|
.run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True)
|
|
)
|
|
except Exception as e:
|
|
logger.error(f"读取音频文件发生错误,错误信息:{e}")
|
|
return {"msg": "读取音频文件发生错误", "code": 1}
|
|
rec_results = model.generate(input=audio_bytes, is_final=True, **param_dict)
|
|
# 结果为空
|
|
if len(rec_results) == 0:
|
|
return {"text": "", "sentences": [], "code": 0}
|
|
elif len(rec_results) == 1:
|
|
# 解析识别结果
|
|
rec_result = rec_results[0]
|
|
text = rec_result["text"]
|
|
sentences = []
|
|
for sentence in rec_result["sentence_info"]:
|
|
# 每句话的时间戳
|
|
sentences.append(
|
|
{"text": sentence["text"], "start": sentence["start"], "end": sentence["end"]}
|
|
)
|
|
ret = {"text": text, "sentences": sentences, "code": 0}
|
|
logger.info(f"识别结果:{ret}")
|
|
return ret
|
|
else:
|
|
logger.info(f"识别结果:{rec_results}")
|
|
return {"msg": "未知错误", "code": -1}
|
|
|
|
|
|
if __name__ == "__main__":
|
|
uvicorn.run(
|
|
app, host=args.host, port=args.port, ssl_keyfile=args.keyfile, ssl_certfile=args.certfile
|
|
)
|