FunASR/funasr/utils/load_utils.py

218 lines
7.9 KiB
Python

import os
import torch
import json
import torch.distributed as dist
import numpy as np
import kaldiio
import librosa
import torchaudio
import time
import logging
from torch.nn.utils.rnn import pad_sequence
try:
from funasr.download.file import download_from_url
except:
print("urllib is not installed, if you infer from url, please install it first.")
import pdb
import subprocess
from subprocess import CalledProcessError, run
def is_ffmpeg_installed():
try:
output = subprocess.check_output(["ffmpeg", "-version"], stderr=subprocess.STDOUT)
return "ffmpeg version" in output.decode("utf-8")
except (subprocess.CalledProcessError, FileNotFoundError):
return False
use_ffmpeg = False
if is_ffmpeg_installed():
use_ffmpeg = True
else:
print(
"Notice: ffmpeg is not installed. torchaudio is used to load audio\n"
"If you want to use ffmpeg backend to load audio, please install it by:"
"\n\tsudo apt install ffmpeg # ubuntu"
"\n\t# brew install ffmpeg # mac"
)
def load_audio_text_image_video(
data_or_path_or_list,
fs: int = 16000,
audio_fs: int = 16000,
data_type="sound",
tokenizer=None,
**kwargs,
):
if isinstance(data_or_path_or_list, (list, tuple)):
if data_type is not None and isinstance(data_type, (list, tuple)):
data_types = [data_type] * len(data_or_path_or_list)
data_or_path_or_list_ret = [[] for d in data_type]
for i, (data_type_i, data_or_path_or_list_i) in enumerate(
zip(data_types, data_or_path_or_list)
):
for j, (data_type_j, data_or_path_or_list_j) in enumerate(
zip(data_type_i, data_or_path_or_list_i)
):
data_or_path_or_list_j = load_audio_text_image_video(
data_or_path_or_list_j,
fs=fs,
audio_fs=audio_fs,
data_type=data_type_j,
tokenizer=tokenizer,
**kwargs,
)
data_or_path_or_list_ret[j].append(data_or_path_or_list_j)
return data_or_path_or_list_ret
else:
return [
load_audio_text_image_video(
audio, fs=fs, audio_fs=audio_fs, data_type=data_type, **kwargs
)
for audio in data_or_path_or_list
]
if isinstance(data_or_path_or_list, str) and data_or_path_or_list.startswith(
"http"
): # download url to local file
data_or_path_or_list = download_from_url(data_or_path_or_list)
if isinstance(data_or_path_or_list, str) and os.path.exists(data_or_path_or_list): # local file
if data_type is None or data_type == "sound":
# if use_ffmpeg:
# data_or_path_or_list = _load_audio_ffmpeg(data_or_path_or_list, sr=fs)
# data_or_path_or_list = torch.from_numpy(data_or_path_or_list).squeeze() # [n_samples,]
# else:
# data_or_path_or_list, audio_fs = torchaudio.load(data_or_path_or_list)
# if kwargs.get("reduce_channels", True):
# data_or_path_or_list = data_or_path_or_list.mean(0)
try:
data_or_path_or_list, audio_fs = torchaudio.load(data_or_path_or_list)
if kwargs.get("reduce_channels", True):
data_or_path_or_list = data_or_path_or_list.mean(0)
except:
data_or_path_or_list = _load_audio_ffmpeg(data_or_path_or_list, sr=fs)
data_or_path_or_list = torch.from_numpy(
data_or_path_or_list
).squeeze() # [n_samples,]
elif data_type == "text" and tokenizer is not None:
data_or_path_or_list = tokenizer.encode(data_or_path_or_list)
elif data_type == "image": # undo
pass
elif data_type == "video": # undo
pass
# if data_in is a file or url, set is_final=True
if "cache" in kwargs:
kwargs["cache"]["is_final"] = True
kwargs["cache"]["is_streaming_input"] = False
elif isinstance(data_or_path_or_list, str) and data_type == "text" and tokenizer is not None:
data_or_path_or_list = tokenizer.encode(data_or_path_or_list)
elif isinstance(data_or_path_or_list, np.ndarray): # audio sample point
data_or_path_or_list = torch.from_numpy(data_or_path_or_list).squeeze() # [n_samples,]
elif isinstance(data_or_path_or_list, str) and data_type == "kaldi_ark":
data_mat = kaldiio.load_mat(data_or_path_or_list)
if isinstance(data_mat, tuple):
audio_fs, mat = data_mat
else:
mat = data_mat
if mat.dtype == "int16" or mat.dtype == "int32":
mat = mat.astype(np.float64)
mat = mat / 32768
if mat.ndim == 2:
mat = mat[:, 0]
data_or_path_or_list = mat
else:
pass
# print(f"unsupport data type: {data_or_path_or_list}, return raw data")
if audio_fs != fs and data_type != "text":
resampler = torchaudio.transforms.Resample(audio_fs, fs)
data_or_path_or_list = resampler(data_or_path_or_list[None, :])[0, :]
return data_or_path_or_list
def load_bytes(input):
middle_data = np.frombuffer(input, dtype=np.int16)
middle_data = np.asarray(middle_data)
if middle_data.dtype.kind not in "iu":
raise TypeError("'middle_data' must be an array of integers")
dtype = np.dtype("float32")
if dtype.kind != "f":
raise TypeError("'dtype' must be a floating point type")
i = np.iinfo(middle_data.dtype)
abs_max = 2 ** (i.bits - 1)
offset = i.min + abs_max
array = np.frombuffer((middle_data.astype(dtype) - offset) / abs_max, dtype=np.float32)
return array
def extract_fbank(data, data_len=None, data_type: str = "sound", frontend=None, **kwargs):
if isinstance(data, np.ndarray):
data = torch.from_numpy(data)
if len(data.shape) < 2:
data = data[None, :] # data: [batch, N]
data_len = [data.shape[1]] if data_len is None else data_len
elif isinstance(data, torch.Tensor):
if len(data.shape) < 2:
data = data[None, :] # data: [batch, N]
data_len = [data.shape[1]] if data_len is None else data_len
elif isinstance(data, (list, tuple)):
data_list, data_len = [], []
for data_i in data:
if isinstance(data_i, np.ndarray):
data_i = torch.from_numpy(data_i)
data_list.append(data_i)
data_len.append(data_i.shape[0])
data = pad_sequence(data_list, batch_first=True) # data: [batch, N]
data, data_len = frontend(data, data_len, **kwargs)
if isinstance(data_len, (list, tuple)):
data_len = torch.tensor([data_len])
return data.to(torch.float32), data_len.to(torch.int32)
def _load_audio_ffmpeg(file: str, sr: int = 16000):
"""
Open an audio file and read as mono waveform, resampling as necessary
Parameters
----------
file: str
The audio file to open
sr: int
The sample rate to resample the audio if necessary
Returns
-------
A NumPy array containing the audio waveform, in float32 dtype.
"""
# This launches a subprocess to decode audio while down-mixing
# and resampling as necessary. Requires the ffmpeg CLI in PATH.
# fmt: off
cmd = [
"ffmpeg",
"-nostdin",
"-threads", "0",
"-i", file,
"-f", "s16le",
"-ac", "1",
"-acodec", "pcm_s16le",
"-ar", str(sr),
"-"
]
# fmt: on
try:
out = run(cmd, capture_output=True, check=True).stdout
except CalledProcessError as e:
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0