56 lines
1.9 KiB
Python
56 lines
1.9 KiB
Python
#!/usr/bin/env python3
|
|
|
|
"""Initialize modules for espnet2 neural networks."""
|
|
|
|
import math
|
|
import torch
|
|
|
|
|
|
def initialize(model: torch.nn.Module, init: str):
|
|
"""Initialize weights of a neural network module.
|
|
|
|
Parameters are initialized using the given method or distribution.
|
|
|
|
Custom initialization routines can be implemented into submodules
|
|
as function `espnet_initialization_fn` within the custom module.
|
|
|
|
Args:
|
|
model: Target.
|
|
init: Method of initialization.
|
|
"""
|
|
|
|
# weight init
|
|
for p in model.parameters():
|
|
if p.dim() > 1:
|
|
if init == "xavier_uniform":
|
|
torch.nn.init.xavier_uniform_(p.data)
|
|
elif init == "xavier_normal":
|
|
torch.nn.init.xavier_normal_(p.data)
|
|
elif init == "kaiming_uniform":
|
|
torch.nn.init.kaiming_uniform_(p.data, nonlinearity="relu")
|
|
elif init == "kaiming_normal":
|
|
torch.nn.init.kaiming_normal_(p.data, nonlinearity="relu")
|
|
else:
|
|
raise ValueError("Unknown initialization: " + init)
|
|
# bias init
|
|
for p in model.parameters():
|
|
if p.dim() == 1:
|
|
p.data.zero_()
|
|
|
|
# reset some modules with default init
|
|
for m in model.modules():
|
|
if isinstance(m, (torch.nn.Embedding, torch.nn.LayerNorm, torch.nn.GroupNorm)):
|
|
m.reset_parameters()
|
|
if hasattr(m, "espnet_initialization_fn"):
|
|
m.espnet_initialization_fn()
|
|
|
|
# TODO(xkc): Hacking s3prl_frontend and wav2vec2encoder initialization
|
|
if getattr(model, "encoder", None) and getattr(
|
|
model.encoder, "reload_pretrained_parameters", None
|
|
):
|
|
model.encoder.reload_pretrained_parameters()
|
|
if getattr(model, "frontend", None) and getattr(
|
|
model.frontend, "reload_pretrained_parameters", None
|
|
):
|
|
model.frontend.reload_pretrained_parameters()
|