FunASR/funasr/models/whisper_lid/encoder.py

114 lines
3.4 KiB
Python

# Copyright ESPnet (https://github.com/espnet/espnet). All Rights Reserved.
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
import copy
from typing import Optional, Tuple, Union
import torch
from torch import nn
import torch.nn.functional as F
import whisper
from funasr.models.transformer.utils.nets_utils import make_pad_mask
from funasr.models.specaug.specaug import SpecAug
from funasr.register import tables
@tables.register("encoder_classes", "OpenAIWhisperEncoderWarp")
class OpenAIWhisperEncoderWarp(nn.Module):
"""Transformer-based Speech Encoder from OpenAI's Whisper Model:
URL: https://github.com/openai/whisper
"""
def __init__(
self,
dropout_rate: float = 0.0,
whisper_model: str = "small",
download_dir: str = None,
use_specaug: bool = False,
use_padmask: bool = False,
specaug_conf: Union[dict, None] = None,
):
super().__init__()
# note that originally Whisper doesn't use dropouts
self.dropout = torch.nn.Dropout(dropout_rate)
assert whisper_model in whisper.available_models()
_model = whisper.load_model(whisper_model, download_root=download_dir, device="cpu")
self.encoders = copy.deepcopy(_model.encoder)
self.encoders.train()
del _model
if use_specaug:
self.specaug = SpecAug(**specaug_conf)
else:
self.specaug = None
self.use_padmask = use_padmask
def whisper_encode(
self,
input: torch.Tensor,
ilens: torch.Tensor = None,
) -> torch.Tensor:
x = F.gelu(self.encoders.conv1(input))
x = F.gelu(self.encoders.conv2(x))
x = x.permute(0, 2, 1)
n_frames = x.size(1)
max_pos = self.encoders.positional_embedding.size(0)
if n_frames <= max_pos:
x = (x + self.encoders.positional_embedding[: x.size(1), :]).to(x.dtype)
else:
# due to positional encoding, audios >30 sec won't be accepted
x = x[:, :max_pos, :] + self.encoders.positional_embedding
if ilens is not None:
olens = (
1
+ (ilens - self.encoders.conv2.kernel_size[0] + 2 * self.encoders.conv2.padding[0])
// self.encoders.conv2.stride[0]
)
olens = torch.clamp(olens, max=max_pos)
else:
olens = None
if self.use_padmask:
padding_mask = (~make_pad_mask(olens)[:, None, :]).to(x.device)
else:
padding_mask = None
x = self.dropout(x)
for layer, block in enumerate(self.encoders.blocks):
x = block(x)
if layer < len(self.encoders.blocks) - 1:
x = self.dropout(x)
x = self.encoders.ln_post(x)
return x, olens
def output_size(self) -> int:
# dummy output size
return self.encoders.conv2.weight.shape[0]
def forward(
self,
xs_pad: torch.Tensor,
ilens: torch.Tensor,
prev_states: torch.Tensor = None,
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
feats, feats_lens = xs_pad, ilens
if self.specaug is not None and self.encoders.training:
feats = torch.transpose(feats, 1, 2)
feats, feats_lens = self.specaug(feats, feats_lens)
feats = torch.transpose(feats, 1, 2)
xs_pad, olens = self.whisper_encode(feats, feats_lens)
return xs_pad, olens, None