187 lines
6.5 KiB
Python
187 lines
6.5 KiB
Python
"""SpecAugment module."""
|
||
|
||
from typing import Optional
|
||
from typing import Sequence
|
||
from typing import Union
|
||
|
||
from funasr.models.specaug.mask_along_axis import MaskAlongAxis
|
||
from funasr.models.specaug.mask_along_axis import MaskAlongAxisVariableMaxWidth
|
||
from funasr.models.specaug.mask_along_axis import MaskAlongAxisLFR
|
||
from funasr.models.specaug.time_warp import TimeWarp
|
||
from funasr.register import tables
|
||
|
||
import torch.nn as nn
|
||
|
||
|
||
@tables.register("specaug_classes", "SpecAug")
|
||
class SpecAug(nn.Module):
|
||
"""Implementation of SpecAug.
|
||
|
||
Reference:
|
||
Daniel S. Park et al.
|
||
"SpecAugment: A Simple Data
|
||
Augmentation Method for Automatic Speech Recognition"
|
||
|
||
.. warning::
|
||
When using cuda mode, time_warp doesn't have reproducibility
|
||
due to `torch.nn.functional.interpolate`.
|
||
|
||
"""
|
||
|
||
def __init__(
|
||
self,
|
||
apply_time_warp: bool = True,
|
||
time_warp_window: int = 5,
|
||
time_warp_mode: str = "bicubic",
|
||
apply_freq_mask: bool = True,
|
||
freq_mask_width_range: Union[int, Sequence[int]] = (0, 20),
|
||
num_freq_mask: int = 2,
|
||
apply_time_mask: bool = True,
|
||
time_mask_width_range: Optional[Union[int, Sequence[int]]] = None,
|
||
time_mask_width_ratio_range: Optional[Union[float, Sequence[float]]] = None,
|
||
num_time_mask: int = 2,
|
||
):
|
||
if not apply_time_warp and not apply_time_mask and not apply_freq_mask:
|
||
raise ValueError("Either one of time_warp, time_mask, or freq_mask should be applied")
|
||
if (
|
||
apply_time_mask
|
||
and (time_mask_width_range is not None)
|
||
and (time_mask_width_ratio_range is not None)
|
||
):
|
||
raise ValueError(
|
||
'Either one of "time_mask_width_range" or '
|
||
'"time_mask_width_ratio_range" can be used'
|
||
)
|
||
super().__init__()
|
||
self.apply_time_warp = apply_time_warp
|
||
self.apply_freq_mask = apply_freq_mask
|
||
self.apply_time_mask = apply_time_mask
|
||
|
||
if apply_time_warp:
|
||
self.time_warp = TimeWarp(window=time_warp_window, mode=time_warp_mode)
|
||
else:
|
||
self.time_warp = None
|
||
|
||
if apply_freq_mask:
|
||
self.freq_mask = MaskAlongAxis(
|
||
dim="freq",
|
||
mask_width_range=freq_mask_width_range,
|
||
num_mask=num_freq_mask,
|
||
)
|
||
else:
|
||
self.freq_mask = None
|
||
|
||
if apply_time_mask:
|
||
if time_mask_width_range is not None:
|
||
self.time_mask = MaskAlongAxis(
|
||
dim="time",
|
||
mask_width_range=time_mask_width_range,
|
||
num_mask=num_time_mask,
|
||
)
|
||
elif time_mask_width_ratio_range is not None:
|
||
self.time_mask = MaskAlongAxisVariableMaxWidth(
|
||
dim="time",
|
||
mask_width_ratio_range=time_mask_width_ratio_range,
|
||
num_mask=num_time_mask,
|
||
)
|
||
else:
|
||
raise ValueError(
|
||
'Either one of "time_mask_width_range" or '
|
||
'"time_mask_width_ratio_range" should be used.'
|
||
)
|
||
else:
|
||
self.time_mask = None
|
||
|
||
def forward(self, x, x_lengths=None):
|
||
if self.time_warp is not None:
|
||
x, x_lengths = self.time_warp(x, x_lengths)
|
||
if self.freq_mask is not None:
|
||
x, x_lengths = self.freq_mask(x, x_lengths)
|
||
if self.time_mask is not None:
|
||
x, x_lengths = self.time_mask(x, x_lengths)
|
||
return x, x_lengths
|
||
|
||
|
||
@tables.register("specaug_classes", "SpecAugLFR")
|
||
class SpecAugLFR(nn.Module):
|
||
"""Implementation of SpecAug.
|
||
lfr_rate:low frame rate
|
||
"""
|
||
|
||
def __init__(
|
||
self,
|
||
apply_time_warp: bool = True,
|
||
time_warp_window: int = 5,
|
||
time_warp_mode: str = "bicubic",
|
||
apply_freq_mask: bool = True,
|
||
freq_mask_width_range: Union[int, Sequence[int]] = (0, 20),
|
||
num_freq_mask: int = 2,
|
||
lfr_rate: int = 0,
|
||
apply_time_mask: bool = True,
|
||
time_mask_width_range: Optional[Union[int, Sequence[int]]] = None,
|
||
time_mask_width_ratio_range: Optional[Union[float, Sequence[float]]] = None,
|
||
num_time_mask: int = 2,
|
||
):
|
||
if not apply_time_warp and not apply_time_mask and not apply_freq_mask:
|
||
raise ValueError("Either one of time_warp, time_mask, or freq_mask should be applied")
|
||
if (
|
||
apply_time_mask
|
||
and (time_mask_width_range is not None)
|
||
and (time_mask_width_ratio_range is not None)
|
||
):
|
||
raise ValueError(
|
||
'Either one of "time_mask_width_range" or '
|
||
'"time_mask_width_ratio_range" can be used'
|
||
)
|
||
super().__init__()
|
||
self.apply_time_warp = apply_time_warp
|
||
self.apply_freq_mask = apply_freq_mask
|
||
self.apply_time_mask = apply_time_mask
|
||
|
||
if apply_time_warp:
|
||
self.time_warp = TimeWarp(window=time_warp_window, mode=time_warp_mode)
|
||
else:
|
||
self.time_warp = None
|
||
|
||
if apply_freq_mask:
|
||
self.freq_mask = MaskAlongAxisLFR(
|
||
dim="freq",
|
||
mask_width_range=freq_mask_width_range,
|
||
num_mask=num_freq_mask,
|
||
lfr_rate=lfr_rate + 1,
|
||
)
|
||
|
||
else:
|
||
self.freq_mask = None
|
||
|
||
if apply_time_mask:
|
||
if time_mask_width_range is not None:
|
||
self.time_mask = MaskAlongAxisLFR(
|
||
dim="time",
|
||
mask_width_range=time_mask_width_range,
|
||
num_mask=num_time_mask,
|
||
lfr_rate=lfr_rate + 1,
|
||
)
|
||
elif time_mask_width_ratio_range is not None:
|
||
self.time_mask = MaskAlongAxisVariableMaxWidth(
|
||
dim="time",
|
||
mask_width_ratio_range=time_mask_width_ratio_range,
|
||
num_mask=num_time_mask,
|
||
)
|
||
else:
|
||
raise ValueError(
|
||
'Either one of "time_mask_width_range" or '
|
||
'"time_mask_width_ratio_range" should be used.'
|
||
)
|
||
else:
|
||
self.time_mask = None
|
||
|
||
def forward(self, x, x_lengths=None):
|
||
if self.time_warp is not None:
|
||
x, x_lengths = self.time_warp(x, x_lengths)
|
||
if self.freq_mask is not None:
|
||
x, x_lengths = self.freq_mask(x, x_lengths)
|
||
if self.time_mask is not None:
|
||
x, x_lengths = self.time_mask(x, x_lengths)
|
||
return x, x_lengths
|