42 lines
1.4 KiB
Python
42 lines
1.4 KiB
Python
import torch
|
|
from torch.nn import functional as F
|
|
from funasr.models.decoder.abs_decoder import AbsDecoder
|
|
|
|
|
|
class DenseDecoder(AbsDecoder):
|
|
def __init__(
|
|
self,
|
|
vocab_size,
|
|
encoder_output_size,
|
|
num_nodes_resnet1: int = 256,
|
|
num_nodes_last_layer: int = 256,
|
|
batchnorm_momentum: float = 0.5,
|
|
):
|
|
super(DenseDecoder, self).__init__()
|
|
self.resnet1_dense = torch.nn.Linear(encoder_output_size, num_nodes_resnet1)
|
|
self.resnet1_bn = torch.nn.BatchNorm1d(
|
|
num_nodes_resnet1, eps=1e-3, momentum=batchnorm_momentum
|
|
)
|
|
|
|
self.resnet2_dense = torch.nn.Linear(num_nodes_resnet1, num_nodes_last_layer)
|
|
self.resnet2_bn = torch.nn.BatchNorm1d(
|
|
num_nodes_last_layer, eps=1e-3, momentum=batchnorm_momentum
|
|
)
|
|
|
|
self.output_dense = torch.nn.Linear(num_nodes_last_layer, vocab_size, bias=False)
|
|
|
|
def forward(self, features):
|
|
embeddings = {}
|
|
features = self.resnet1_dense(features)
|
|
embeddings["resnet1_dense"] = features
|
|
features = F.relu(features)
|
|
features = self.resnet1_bn(features)
|
|
|
|
features = self.resnet2_dense(features)
|
|
embeddings["resnet2_dense"] = features
|
|
features = F.relu(features)
|
|
features = self.resnet2_bn(features)
|
|
|
|
features = self.output_dense(features)
|
|
return features, embeddings
|