574 lines
28 KiB
Python
574 lines
28 KiB
Python
import argparse
|
||
import os
|
||
import traceback
|
||
import warnings
|
||
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
|
||
|
||
import numpy as np
|
||
import torch
|
||
import tqdm
|
||
|
||
from .audio import (
|
||
FRAMES_PER_SECOND,
|
||
HOP_LENGTH,
|
||
N_FRAMES,
|
||
N_SAMPLES,
|
||
SAMPLE_RATE,
|
||
log_mel_spectrogram,
|
||
pad_or_trim,
|
||
)
|
||
from .decoding import DecodingOptions, DecodingResult
|
||
from .timing import add_word_timestamps
|
||
from .tokenizer import LANGUAGES, TO_LANGUAGE_CODE, get_tokenizer
|
||
from .utils import (
|
||
exact_div,
|
||
format_timestamp,
|
||
get_end,
|
||
get_writer,
|
||
make_safe,
|
||
optional_float,
|
||
optional_int,
|
||
str2bool,
|
||
)
|
||
|
||
if TYPE_CHECKING:
|
||
from .model import Whisper
|
||
|
||
|
||
def transcribe(
|
||
model: "Whisper",
|
||
audio: Union[str, np.ndarray, torch.Tensor],
|
||
*,
|
||
verbose: Optional[bool] = None,
|
||
temperature: Union[float, Tuple[float, ...]] = (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
|
||
compression_ratio_threshold: Optional[float] = 2.4,
|
||
logprob_threshold: Optional[float] = -1.0,
|
||
no_speech_threshold: Optional[float] = 0.6,
|
||
condition_on_previous_text: bool = True,
|
||
initial_prompt: Optional[str] = None,
|
||
word_timestamps: bool = False,
|
||
prepend_punctuations: str = "\"'“¿([{-",
|
||
append_punctuations: str = "\"'.。,,!!??::”)]}、",
|
||
clip_timestamps: Union[str, List[float]] = "0",
|
||
hallucination_silence_threshold: Optional[float] = None,
|
||
**decode_options,
|
||
):
|
||
"""
|
||
Transcribe an audio file using Whisper
|
||
|
||
Parameters
|
||
----------
|
||
model: Whisper
|
||
The Whisper model instance
|
||
|
||
audio: Union[str, np.ndarray, torch.Tensor]
|
||
The path to the audio file to open, or the audio waveform
|
||
|
||
verbose: bool
|
||
Whether to display the text being decoded to the console. If True, displays all the details,
|
||
If False, displays minimal details. If None, does not display anything
|
||
|
||
temperature: Union[float, Tuple[float, ...]]
|
||
Temperature for sampling. It can be a tuple of temperatures, which will be successively used
|
||
upon failures according to either `compression_ratio_threshold` or `logprob_threshold`.
|
||
|
||
compression_ratio_threshold: float
|
||
If the gzip compression ratio is above this value, treat as failed
|
||
|
||
logprob_threshold: float
|
||
If the average log probability over sampled tokens is below this value, treat as failed
|
||
|
||
no_speech_threshold: float
|
||
If the no_speech probability is higher than this value AND the average log probability
|
||
over sampled tokens is below `logprob_threshold`, consider the segment as silent
|
||
|
||
condition_on_previous_text: bool
|
||
if True, the previous output of the model is provided as a prompt for the next window;
|
||
disabling may make the text inconsistent across windows, but the model becomes less prone to
|
||
getting stuck in a failure loop, such as repetition looping or timestamps going out of sync.
|
||
|
||
word_timestamps: bool
|
||
Extract word-level timestamps using the cross-attention pattern and dynamic time warping,
|
||
and include the timestamps for each word in each segment.
|
||
|
||
prepend_punctuations: str
|
||
If word_timestamps is True, merge these punctuation symbols with the next word
|
||
|
||
append_punctuations: str
|
||
If word_timestamps is True, merge these punctuation symbols with the previous word
|
||
|
||
initial_prompt: Optional[str]
|
||
Optional text to provide as a prompt for the first window. This can be used to provide, or
|
||
"prompt-engineer" a context for transcription, e.g. custom vocabularies or proper nouns
|
||
to make it more likely to predict those word correctly.
|
||
|
||
decode_options: dict
|
||
Keyword arguments to construct `DecodingOptions` instances
|
||
|
||
clip_timestamps: Union[str, List[float]]
|
||
Comma-separated list start,end,start,end,... timestamps (in seconds) of clips to process.
|
||
The last end timestamp defaults to the end of the file.
|
||
|
||
hallucination_silence_threshold: Optional[float]
|
||
When word_timestamps is True, skip silent periods longer than this threshold (in seconds)
|
||
when a possible hallucination is detected
|
||
|
||
Returns
|
||
-------
|
||
A dictionary containing the resulting text ("text") and segment-level details ("segments"), and
|
||
the spoken language ("language"), which is detected when `decode_options["language"]` is None.
|
||
"""
|
||
dtype = torch.float16 if decode_options.get("fp16", True) else torch.float32
|
||
if model.device == torch.device("cpu"):
|
||
if torch.cuda.is_available():
|
||
warnings.warn("Performing inference on CPU when CUDA is available")
|
||
if dtype == torch.float16:
|
||
warnings.warn("FP16 is not supported on CPU; using FP32 instead")
|
||
dtype = torch.float32
|
||
|
||
if dtype == torch.float32:
|
||
decode_options["fp16"] = False
|
||
|
||
# Pad 30-seconds of silence to the input audio, for slicing
|
||
mel = log_mel_spectrogram(audio, model.dims.n_mels, padding=N_SAMPLES)
|
||
content_frames = mel.shape[-1] - N_FRAMES
|
||
content_duration = float(content_frames * HOP_LENGTH / SAMPLE_RATE)
|
||
|
||
if decode_options.get("language", None) is None:
|
||
if not model.is_multilingual:
|
||
decode_options["language"] = "en"
|
||
else:
|
||
if verbose:
|
||
print(
|
||
"Detecting language using up to the first 30 seconds. Use `--language` to specify the language"
|
||
)
|
||
mel_segment = pad_or_trim(mel, N_FRAMES).to(model.device).to(dtype)
|
||
_, probs = model.detect_language(mel_segment)
|
||
decode_options["language"] = max(probs, key=probs.get)
|
||
if verbose is not None:
|
||
print(f"Detected language: {LANGUAGES[decode_options['language']].title()}")
|
||
|
||
language: str = decode_options["language"]
|
||
task: str = decode_options.get("task", "transcribe")
|
||
tokenizer = get_tokenizer(
|
||
model.is_multilingual,
|
||
num_languages=model.num_languages,
|
||
language=language,
|
||
task=task,
|
||
)
|
||
|
||
if isinstance(clip_timestamps, str):
|
||
clip_timestamps = [
|
||
float(ts) for ts in (clip_timestamps.split(",") if clip_timestamps else [])
|
||
]
|
||
seek_points: List[int] = [round(ts * FRAMES_PER_SECOND) for ts in clip_timestamps]
|
||
if len(seek_points) == 0:
|
||
seek_points.append(0)
|
||
if len(seek_points) % 2 == 1:
|
||
seek_points.append(content_frames)
|
||
seek_clips: List[Tuple[int, int]] = list(zip(seek_points[::2], seek_points[1::2]))
|
||
|
||
punctuation = "\"'“¿([{-\"'.。,,!!??::”)]}、"
|
||
|
||
if word_timestamps and task == "translate":
|
||
warnings.warn("Word-level timestamps on translations may not be reliable.")
|
||
|
||
def decode_with_fallback(segment: torch.Tensor) -> DecodingResult:
|
||
temperatures = [temperature] if isinstance(temperature, (int, float)) else temperature
|
||
decode_result = None
|
||
|
||
for t in temperatures:
|
||
kwargs = {**decode_options}
|
||
if t > 0:
|
||
# disable beam_size and patience when t > 0
|
||
kwargs.pop("beam_size", None)
|
||
kwargs.pop("patience", None)
|
||
else:
|
||
# disable best_of when t == 0
|
||
kwargs.pop("best_of", None)
|
||
|
||
options = DecodingOptions(**kwargs, temperature=t)
|
||
decode_result = model.decode(segment, options)
|
||
|
||
needs_fallback = False
|
||
if (
|
||
compression_ratio_threshold is not None
|
||
and decode_result.compression_ratio > compression_ratio_threshold
|
||
):
|
||
needs_fallback = True # too repetitive
|
||
if logprob_threshold is not None and decode_result.avg_logprob < logprob_threshold:
|
||
needs_fallback = True # average log probability is too low
|
||
if (
|
||
no_speech_threshold is not None
|
||
and decode_result.no_speech_prob > no_speech_threshold
|
||
):
|
||
needs_fallback = False # silence
|
||
if not needs_fallback:
|
||
break
|
||
|
||
return decode_result
|
||
|
||
clip_idx = 0
|
||
seek = seek_clips[clip_idx][0]
|
||
input_stride = exact_div(N_FRAMES, model.dims.n_audio_ctx) # mel frames per output token: 2
|
||
time_precision = (
|
||
input_stride * HOP_LENGTH / SAMPLE_RATE
|
||
) # time per output token: 0.02 (seconds)
|
||
all_tokens = []
|
||
all_segments = []
|
||
prompt_reset_since = 0
|
||
|
||
if initial_prompt is not None:
|
||
initial_prompt_tokens = tokenizer.encode(" " + initial_prompt.strip())
|
||
all_tokens.extend(initial_prompt_tokens)
|
||
else:
|
||
initial_prompt_tokens = []
|
||
|
||
def new_segment(*, start: float, end: float, tokens: torch.Tensor, result: DecodingResult):
|
||
tokens = tokens.tolist()
|
||
text_tokens = [token for token in tokens if token < tokenizer.eot]
|
||
return {
|
||
"seek": seek,
|
||
"start": start,
|
||
"end": end,
|
||
"text": tokenizer.decode(text_tokens),
|
||
"tokens": tokens,
|
||
"temperature": result.temperature,
|
||
"avg_logprob": result.avg_logprob,
|
||
"compression_ratio": result.compression_ratio,
|
||
"no_speech_prob": result.no_speech_prob,
|
||
}
|
||
|
||
# show the progress bar when verbose is False (if True, transcribed text will be printed)
|
||
with tqdm.tqdm(total=content_frames, unit="frames", disable=verbose is not False) as pbar:
|
||
last_speech_timestamp = 0.0
|
||
# NOTE: This loop is obscurely flattened to make the diff readable.
|
||
# A later commit should turn this into a simpler nested loop.
|
||
# for seek_clip_start, seek_clip_end in seek_clips:
|
||
# while seek < seek_clip_end
|
||
while clip_idx < len(seek_clips):
|
||
seek_clip_start, seek_clip_end = seek_clips[clip_idx]
|
||
if seek < seek_clip_start:
|
||
seek = seek_clip_start
|
||
if seek >= seek_clip_end:
|
||
clip_idx += 1
|
||
if clip_idx < len(seek_clips):
|
||
seek = seek_clips[clip_idx][0]
|
||
continue
|
||
time_offset = float(seek * HOP_LENGTH / SAMPLE_RATE)
|
||
window_end_time = float((seek + N_FRAMES) * HOP_LENGTH / SAMPLE_RATE)
|
||
segment_size = min(N_FRAMES, content_frames - seek, seek_clip_end - seek)
|
||
mel_segment = mel[:, seek : seek + segment_size]
|
||
segment_duration = segment_size * HOP_LENGTH / SAMPLE_RATE
|
||
mel_segment = pad_or_trim(mel_segment, N_FRAMES).to(model.device).to(dtype)
|
||
|
||
decode_options["prompt"] = all_tokens[prompt_reset_since:]
|
||
result: DecodingResult = decode_with_fallback(mel_segment)
|
||
tokens = torch.tensor(result.tokens)
|
||
|
||
if no_speech_threshold is not None:
|
||
# no voice activity check
|
||
should_skip = result.no_speech_prob > no_speech_threshold
|
||
if logprob_threshold is not None and result.avg_logprob > logprob_threshold:
|
||
# don't skip if the logprob is high enough, despite the no_speech_prob
|
||
should_skip = False
|
||
|
||
if should_skip:
|
||
seek += segment_size # fast-forward to the next segment boundary
|
||
continue
|
||
|
||
previous_seek = seek
|
||
current_segments = []
|
||
|
||
# anomalous words are very long/short/improbable
|
||
def word_anomaly_score(word: dict) -> float:
|
||
probability = word.get("probability", 0.0)
|
||
duration = word["end"] - word["start"]
|
||
score = 0.0
|
||
if probability < 0.15:
|
||
score += 1.0
|
||
if duration < 0.133:
|
||
score += (0.133 - duration) * 15
|
||
if duration > 2.0:
|
||
score += duration - 2.0
|
||
return score
|
||
|
||
def is_segment_anomaly(segment: Optional[dict]) -> bool:
|
||
if segment is None or not segment["words"]:
|
||
return False
|
||
words = [w for w in segment["words"] if w["word"] not in punctuation]
|
||
words = words[:8]
|
||
score = sum(word_anomaly_score(w) for w in words)
|
||
return score >= 3 or score + 0.01 >= len(words)
|
||
|
||
def next_words_segment(segments: List[dict]) -> Optional[dict]:
|
||
return next((s for s in segments if s["words"]), None)
|
||
|
||
timestamp_tokens: torch.Tensor = tokens.ge(tokenizer.timestamp_begin)
|
||
single_timestamp_ending = timestamp_tokens[-2:].tolist() == [False, True]
|
||
|
||
consecutive = torch.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0]
|
||
consecutive.add_(1)
|
||
if len(consecutive) > 0:
|
||
# if the output contains two consecutive timestamp tokens
|
||
slices = consecutive.tolist()
|
||
if single_timestamp_ending:
|
||
slices.append(len(tokens))
|
||
|
||
last_slice = 0
|
||
for current_slice in slices:
|
||
sliced_tokens = tokens[last_slice:current_slice]
|
||
start_timestamp_pos = sliced_tokens[0].item() - tokenizer.timestamp_begin
|
||
end_timestamp_pos = sliced_tokens[-1].item() - tokenizer.timestamp_begin
|
||
current_segments.append(
|
||
new_segment(
|
||
start=time_offset + start_timestamp_pos * time_precision,
|
||
end=time_offset + end_timestamp_pos * time_precision,
|
||
tokens=sliced_tokens,
|
||
result=result,
|
||
)
|
||
)
|
||
last_slice = current_slice
|
||
|
||
if single_timestamp_ending:
|
||
# single timestamp at the end means no speech after the last timestamp.
|
||
seek += segment_size
|
||
else:
|
||
# otherwise, ignore the unfinished segment and seek to the last timestamp
|
||
last_timestamp_pos = tokens[last_slice - 1].item() - tokenizer.timestamp_begin
|
||
seek += last_timestamp_pos * input_stride
|
||
else:
|
||
duration = segment_duration
|
||
timestamps = tokens[timestamp_tokens.nonzero().flatten()]
|
||
if len(timestamps) > 0 and timestamps[-1].item() != tokenizer.timestamp_begin:
|
||
# no consecutive timestamps but it has a timestamp; use the last one.
|
||
last_timestamp_pos = timestamps[-1].item() - tokenizer.timestamp_begin
|
||
duration = last_timestamp_pos * time_precision
|
||
|
||
current_segments.append(
|
||
new_segment(
|
||
start=time_offset,
|
||
end=time_offset + duration,
|
||
tokens=tokens,
|
||
result=result,
|
||
)
|
||
)
|
||
seek += segment_size
|
||
|
||
if word_timestamps:
|
||
add_word_timestamps(
|
||
segments=current_segments,
|
||
model=model,
|
||
tokenizer=tokenizer,
|
||
mel=mel_segment,
|
||
num_frames=segment_size,
|
||
prepend_punctuations=prepend_punctuations,
|
||
append_punctuations=append_punctuations,
|
||
last_speech_timestamp=last_speech_timestamp,
|
||
)
|
||
|
||
if not single_timestamp_ending:
|
||
last_word_end = get_end(current_segments)
|
||
if last_word_end is not None and last_word_end > time_offset:
|
||
seek = round(last_word_end * FRAMES_PER_SECOND)
|
||
|
||
# skip silence before possible hallucinations
|
||
if hallucination_silence_threshold is not None:
|
||
threshold = hallucination_silence_threshold
|
||
if not single_timestamp_ending:
|
||
last_word_end = get_end(current_segments)
|
||
if last_word_end is not None and last_word_end > time_offset:
|
||
remaining_duration = window_end_time - last_word_end
|
||
if remaining_duration > threshold:
|
||
seek = round(last_word_end * FRAMES_PER_SECOND)
|
||
else:
|
||
seek = previous_seek + segment_size
|
||
|
||
# if first segment might be a hallucination, skip leading silence
|
||
first_segment = next_words_segment(current_segments)
|
||
if first_segment is not None and is_segment_anomaly(first_segment):
|
||
gap = first_segment["start"] - time_offset
|
||
if gap > threshold:
|
||
seek = previous_seek + round(gap * FRAMES_PER_SECOND)
|
||
continue
|
||
|
||
# skip silence before any possible hallucination that is surrounded
|
||
# by silence or more hallucinations
|
||
hal_last_end = last_speech_timestamp
|
||
for si in range(len(current_segments)):
|
||
segment = current_segments[si]
|
||
if not segment["words"]:
|
||
continue
|
||
if is_segment_anomaly(segment):
|
||
next_segment = next_words_segment(current_segments[si + 1 :])
|
||
if next_segment is not None:
|
||
hal_next_start = next_segment["words"][0]["start"]
|
||
else:
|
||
hal_next_start = time_offset + segment_duration
|
||
silence_before = (
|
||
segment["start"] - hal_last_end > threshold
|
||
or segment["start"] < threshold
|
||
or segment["start"] - time_offset < 2.0
|
||
)
|
||
silence_after = (
|
||
hal_next_start - segment["end"] > threshold
|
||
or is_segment_anomaly(next_segment)
|
||
or window_end_time - segment["end"] < 2.0
|
||
)
|
||
if silence_before and silence_after:
|
||
seek = round(
|
||
max(time_offset + 1, segment["start"]) * FRAMES_PER_SECOND
|
||
)
|
||
if content_duration - segment["end"] < threshold:
|
||
seek = content_frames
|
||
current_segments[si:] = []
|
||
break
|
||
hal_last_end = segment["end"]
|
||
|
||
last_word_end = get_end(current_segments)
|
||
if last_word_end is not None:
|
||
last_speech_timestamp = last_word_end
|
||
|
||
if verbose:
|
||
for segment in current_segments:
|
||
start, end, text = segment["start"], segment["end"], segment["text"]
|
||
line = f"[{format_timestamp(start)} --> {format_timestamp(end)}] {text}"
|
||
print(make_safe(line))
|
||
|
||
# if a segment is instantaneous or does not contain text, clear it
|
||
for i, segment in enumerate(current_segments):
|
||
if segment["start"] == segment["end"] or segment["text"].strip() == "":
|
||
segment["text"] = ""
|
||
segment["tokens"] = []
|
||
segment["words"] = []
|
||
|
||
all_segments.extend(
|
||
[
|
||
{"id": i, **segment}
|
||
for i, segment in enumerate(current_segments, start=len(all_segments))
|
||
]
|
||
)
|
||
all_tokens.extend(
|
||
[token for segment in current_segments for token in segment["tokens"]]
|
||
)
|
||
|
||
if not condition_on_previous_text or result.temperature > 0.5:
|
||
# do not feed the prompt tokens if a high temperature was used
|
||
prompt_reset_since = len(all_tokens)
|
||
|
||
# update progress bar
|
||
pbar.update(min(content_frames, seek) - previous_seek)
|
||
|
||
return dict(
|
||
text=tokenizer.decode(all_tokens[len(initial_prompt_tokens) :]),
|
||
segments=all_segments,
|
||
language=language,
|
||
)
|
||
|
||
|
||
def cli():
|
||
from . import available_models
|
||
|
||
def valid_model_name(name):
|
||
if name in available_models() or os.path.exists(name):
|
||
return name
|
||
raise ValueError(
|
||
f"model should be one of {available_models()} or path to a model checkpoint"
|
||
)
|
||
|
||
# fmt: off
|
||
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||
parser.add_argument("audio", nargs="+", type=str, help="audio file(s) to transcribe")
|
||
parser.add_argument("--model", default="small", type=valid_model_name, help="name of the Whisper model to use")
|
||
parser.add_argument("--model_dir", type=str, default=None, help="the path to save model files; uses ~/.cache/whisper by default")
|
||
parser.add_argument("--device", default="cuda" if torch.cuda.is_available() else "cpu", help="device to use for PyTorch inference")
|
||
parser.add_argument("--output_dir", "-o", type=str, default=".", help="directory to save the outputs")
|
||
parser.add_argument("--output_format", "-f", type=str, default="all", choices=["txt", "vtt", "srt", "tsv", "json", "all"], help="format of the output file; if not specified, all available formats will be produced")
|
||
parser.add_argument("--verbose", type=str2bool, default=True, help="whether to print out the progress and debug messages")
|
||
|
||
parser.add_argument("--task", type=str, default="transcribe", choices=["transcribe", "translate"], help="whether to perform X->X speech recognition ('transcribe') or X->English translation ('translate')")
|
||
parser.add_argument("--language", type=str, default=None, choices=sorted(LANGUAGES.keys()) + sorted([k.title() for k in TO_LANGUAGE_CODE.keys()]), help="language spoken in the audio, specify None to perform language detection")
|
||
|
||
parser.add_argument("--temperature", type=float, default=0, help="temperature to use for sampling")
|
||
parser.add_argument("--best_of", type=optional_int, default=5, help="number of candidates when sampling with non-zero temperature")
|
||
parser.add_argument("--beam_size", type=optional_int, default=5, help="number of beams in beam search, only applicable when temperature is zero")
|
||
parser.add_argument("--patience", type=float, default=None, help="optional patience value to use in beam decoding, as in https://arxiv.org/abs/2204.05424, the default (1.0) is equivalent to conventional beam search")
|
||
parser.add_argument("--length_penalty", type=float, default=None, help="optional token length penalty coefficient (alpha) as in https://arxiv.org/abs/1609.08144, uses simple length normalization by default")
|
||
|
||
parser.add_argument("--suppress_tokens", type=str, default="-1", help="comma-separated list of token ids to suppress during sampling; '-1' will suppress most special characters except common punctuations")
|
||
parser.add_argument("--initial_prompt", type=str, default=None, help="optional text to provide as a prompt for the first window.")
|
||
parser.add_argument("--condition_on_previous_text", type=str2bool, default=True, help="if True, provide the previous output of the model as a prompt for the next window; disabling may make the text inconsistent across windows, but the model becomes less prone to getting stuck in a failure loop")
|
||
parser.add_argument("--fp16", type=str2bool, default=True, help="whether to perform inference in fp16; True by default")
|
||
|
||
parser.add_argument("--temperature_increment_on_fallback", type=optional_float, default=0.2, help="temperature to increase when falling back when the decoding fails to meet either of the thresholds below")
|
||
parser.add_argument("--compression_ratio_threshold", type=optional_float, default=2.4, help="if the gzip compression ratio is higher than this value, treat the decoding as failed")
|
||
parser.add_argument("--logprob_threshold", type=optional_float, default=-1.0, help="if the average log probability is lower than this value, treat the decoding as failed")
|
||
parser.add_argument("--no_speech_threshold", type=optional_float, default=0.6, help="if the probability of the <|nospeech|> token is higher than this value AND the decoding has failed due to `logprob_threshold`, consider the segment as silence")
|
||
parser.add_argument("--word_timestamps", type=str2bool, default=False, help="(experimental) extract word-level timestamps and refine the results based on them")
|
||
parser.add_argument("--prepend_punctuations", type=str, default="\"\'“¿([{-", help="if word_timestamps is True, merge these punctuation symbols with the next word")
|
||
parser.add_argument("--append_punctuations", type=str, default="\"\'.。,,!!??::”)]}、", help="if word_timestamps is True, merge these punctuation symbols with the previous word")
|
||
parser.add_argument("--highlight_words", type=str2bool, default=False, help="(requires --word_timestamps True) underline each word as it is spoken in srt and vtt")
|
||
parser.add_argument("--max_line_width", type=optional_int, default=None, help="(requires --word_timestamps True) the maximum number of characters in a line before breaking the line")
|
||
parser.add_argument("--max_line_count", type=optional_int, default=None, help="(requires --word_timestamps True) the maximum number of lines in a segment")
|
||
parser.add_argument("--max_words_per_line", type=optional_int, default=None, help="(requires --word_timestamps True, no effect with --max_line_width) the maximum number of words in a segment")
|
||
parser.add_argument("--threads", type=optional_int, default=0, help="number of threads used by torch for CPU inference; supercedes MKL_NUM_THREADS/OMP_NUM_THREADS")
|
||
parser.add_argument("--clip_timestamps", type=str, default="0", help="comma-separated list start,end,start,end,... timestamps (in seconds) of clips to process, where the last end timestamp defaults to the end of the file")
|
||
parser.add_argument("--hallucination_silence_threshold", type=optional_float, help="(requires --word_timestamps True) skip silent periods longer than this threshold (in seconds) when a possible hallucination is detected")
|
||
# fmt: on
|
||
|
||
args = parser.parse_args().__dict__
|
||
model_name: str = args.pop("model")
|
||
model_dir: str = args.pop("model_dir")
|
||
output_dir: str = args.pop("output_dir")
|
||
output_format: str = args.pop("output_format")
|
||
device: str = args.pop("device")
|
||
os.makedirs(output_dir, exist_ok=True)
|
||
|
||
if model_name.endswith(".en") and args["language"] not in {"en", "English"}:
|
||
if args["language"] is not None:
|
||
warnings.warn(
|
||
f"{model_name} is an English-only model but receipted '{args['language']}'; using English instead."
|
||
)
|
||
args["language"] = "en"
|
||
|
||
temperature = args.pop("temperature")
|
||
if (increment := args.pop("temperature_increment_on_fallback")) is not None:
|
||
temperature = tuple(np.arange(temperature, 1.0 + 1e-6, increment))
|
||
else:
|
||
temperature = [temperature]
|
||
|
||
if (threads := args.pop("threads")) > 0:
|
||
torch.set_num_threads(threads)
|
||
|
||
from . import load_model
|
||
|
||
model = load_model(model_name, device=device, download_root=model_dir)
|
||
|
||
writer = get_writer(output_format, output_dir)
|
||
word_options = [
|
||
"highlight_words",
|
||
"max_line_count",
|
||
"max_line_width",
|
||
"max_words_per_line",
|
||
]
|
||
if not args["word_timestamps"]:
|
||
for option in word_options:
|
||
if args[option]:
|
||
parser.error(f"--{option} requires --word_timestamps True")
|
||
if args["max_line_count"] and not args["max_line_width"]:
|
||
warnings.warn("--max_line_count has no effect without --max_line_width")
|
||
if args["max_words_per_line"] and args["max_line_width"]:
|
||
warnings.warn("--max_words_per_line has no effect with --max_line_width")
|
||
writer_args = {arg: args.pop(arg) for arg in word_options}
|
||
for audio_path in args.pop("audio"):
|
||
try:
|
||
result = transcribe(model, audio_path, temperature=temperature, **args)
|
||
writer(result, audio_path, **writer_args)
|
||
except Exception as e:
|
||
traceback.print_exc()
|
||
print(f"Skipping {audio_path} due to {type(e).__name__}: {str(e)}")
|
||
|
||
|
||
if __name__ == "__main__":
|
||
cli()
|