479 lines
16 KiB
Python
479 lines
16 KiB
Python
########################################################################################################
|
|
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
|
|
########################################################################################################
|
|
|
|
import os, math, gc, importlib
|
|
import torch
|
|
|
|
# torch._C._jit_set_profiling_executor(True)
|
|
# torch._C._jit_set_profiling_mode(True)
|
|
import torch.nn as nn
|
|
from torch.nn import functional as F
|
|
|
|
|
|
def __nop(ob):
|
|
return ob
|
|
|
|
|
|
MyModule = nn.Module
|
|
MyFunction = __nop
|
|
if "RWKV_JIT_ON" in os.environ and os.environ["RWKV_JIT_ON"] == "1":
|
|
MyModule = torch.jit.ScriptModule
|
|
MyFunction = torch.jit.script_method
|
|
|
|
########################################################################################################
|
|
# CUDA Kernel
|
|
########################################################################################################
|
|
|
|
wkv6_cuda = None
|
|
|
|
|
|
def load_rwkv_kernel(
|
|
HEAD_SIZE: int = 64,
|
|
RWKV_CTXLEN: int = 512,
|
|
):
|
|
from torch.utils.cpp_extension import load
|
|
|
|
global wkv6_cuda
|
|
|
|
if wkv6_cuda is not None:
|
|
return
|
|
|
|
absolute_file_path = os.path.abspath(__file__)
|
|
cur_dir = os.path.dirname(absolute_file_path)
|
|
wkv6_cuda = load(
|
|
name="wkv6",
|
|
sources=[f"{cur_dir}/cuda/wkv6_op.cpp", f"{cur_dir}/cuda/wkv6_cuda.cu"],
|
|
verbose=True,
|
|
extra_cuda_cflags=[
|
|
"-res-usage",
|
|
"--use_fast_math",
|
|
"-O3",
|
|
"-Xptxas -O3",
|
|
"--extra-device-vectorization",
|
|
f"-D_N_={HEAD_SIZE}",
|
|
f"-D_T_={RWKV_CTXLEN}",
|
|
],
|
|
)
|
|
|
|
|
|
# dtype = torch.float
|
|
dtype = torch.bfloat16
|
|
|
|
|
|
class WKV_6(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, B, T, C, H, r, k, v, w, u):
|
|
with torch.no_grad():
|
|
# assert r.dtype == torch.bfloat16
|
|
# assert k.dtype == torch.bfloat16
|
|
# assert v.dtype == torch.bfloat16
|
|
# assert w.dtype == torch.bfloat16
|
|
# assert u.dtype == torch.bfloat16
|
|
# assert HEAD_SIZE == C // H
|
|
ctx.B = B
|
|
ctx.T = T
|
|
ctx.C = C
|
|
ctx.H = H
|
|
assert r.is_contiguous()
|
|
assert k.is_contiguous()
|
|
assert v.is_contiguous()
|
|
assert w.is_contiguous()
|
|
assert u.is_contiguous()
|
|
ew = (-torch.exp(w.float())).contiguous()
|
|
ctx.save_for_backward(r, k, v, ew, u)
|
|
y = torch.empty(
|
|
(B, T, C), device=r.device, dtype=dtype, memory_format=torch.contiguous_format
|
|
) # .uniform_(-100, 100)
|
|
wkv6_cuda.forward(B, T, C, H, r, k, v, ew, u, y)
|
|
return y
|
|
|
|
@staticmethod
|
|
def backward(ctx, gy):
|
|
with torch.no_grad():
|
|
# assert gy.dtype == torch.bfloat16
|
|
B = ctx.B
|
|
T = ctx.T
|
|
C = ctx.C
|
|
H = ctx.H
|
|
assert gy.is_contiguous()
|
|
r, k, v, ew, u = ctx.saved_tensors
|
|
gr = torch.empty(
|
|
(B, T, C),
|
|
device=gy.device,
|
|
requires_grad=False,
|
|
dtype=dtype,
|
|
memory_format=torch.contiguous_format,
|
|
) # .uniform_(-100, 100)
|
|
gk = torch.empty(
|
|
(B, T, C),
|
|
device=gy.device,
|
|
requires_grad=False,
|
|
dtype=dtype,
|
|
memory_format=torch.contiguous_format,
|
|
) # .uniform_(-100, 100)
|
|
gv = torch.empty(
|
|
(B, T, C),
|
|
device=gy.device,
|
|
requires_grad=False,
|
|
dtype=dtype,
|
|
memory_format=torch.contiguous_format,
|
|
) # .uniform_(-100, 100)
|
|
gw = torch.empty(
|
|
(B, T, C),
|
|
device=gy.device,
|
|
requires_grad=False,
|
|
dtype=dtype,
|
|
memory_format=torch.contiguous_format,
|
|
) # .uniform_(-100, 100)
|
|
gu = torch.empty(
|
|
(B, C),
|
|
device=gy.device,
|
|
requires_grad=False,
|
|
dtype=dtype,
|
|
memory_format=torch.contiguous_format,
|
|
) # .uniform_(-100, 100)
|
|
wkv6_cuda.backward(B, T, C, H, r, k, v, ew, u, gy, gr, gk, gv, gw, gu)
|
|
gu = torch.sum(gu, 0).view(H, C // H)
|
|
return (None, None, None, None, gr, gk, gv, gw, gu)
|
|
|
|
|
|
def RUN_CUDA_RWKV6(B, T, C, H, r, k, v, w, u):
|
|
return WKV_6.apply(B, T, C, H, r, k, v, w, u)
|
|
|
|
|
|
class RWKV_Tmix_x060(MyModule):
|
|
def __init__(self, args, layer_id):
|
|
super().__init__()
|
|
self.args = args
|
|
|
|
load_rwkv_kernel(args.head_size_a, args.ctx_len)
|
|
|
|
self.layer_id = layer_id
|
|
|
|
self.head_size = args.head_size_a
|
|
self.n_head = args.dim_att // self.head_size
|
|
assert args.dim_att % self.n_head == 0
|
|
|
|
with torch.no_grad():
|
|
ratio_0_to_1 = layer_id / (args.n_layer - 1) # 0 to 1
|
|
ratio_1_to_almost0 = 1.0 - (layer_id / args.n_layer) # 1 to ~0
|
|
ddd = torch.ones(1, 1, args.n_embd)
|
|
for i in range(args.n_embd):
|
|
ddd[0, 0, i] = i / args.n_embd
|
|
|
|
# fancy time_mix
|
|
self.time_maa_x = nn.Parameter(1.0 - torch.pow(ddd, ratio_1_to_almost0))
|
|
self.time_maa_w = nn.Parameter(1.0 - torch.pow(ddd, ratio_1_to_almost0))
|
|
self.time_maa_k = nn.Parameter(1.0 - torch.pow(ddd, ratio_1_to_almost0))
|
|
self.time_maa_v = nn.Parameter(
|
|
1.0 - (torch.pow(ddd, ratio_1_to_almost0) + 0.3 * ratio_0_to_1)
|
|
)
|
|
self.time_maa_r = nn.Parameter(1.0 - torch.pow(ddd, 0.5 * ratio_1_to_almost0))
|
|
self.time_maa_g = nn.Parameter(1.0 - torch.pow(ddd, 0.5 * ratio_1_to_almost0))
|
|
|
|
D_MIX_LORA = 32 # generate TIME_MIX for w,k,v,r,g
|
|
self.time_maa_w1 = nn.Parameter(torch.zeros(args.n_embd, D_MIX_LORA * 5))
|
|
self.time_maa_w2 = nn.Parameter(
|
|
torch.zeros(5, D_MIX_LORA, args.n_embd).uniform_(-0.01, 0.01)
|
|
)
|
|
|
|
# fancy time_decay
|
|
decay_speed = torch.ones(args.dim_att)
|
|
for n in range(args.dim_att):
|
|
decay_speed[n] = -6 + 5 * (n / (args.dim_att - 1)) ** (0.7 + 1.3 * ratio_0_to_1)
|
|
self.time_decay = nn.Parameter(decay_speed.reshape(1, 1, args.dim_att))
|
|
|
|
D_DECAY_LORA = 64
|
|
self.time_decay_w1 = nn.Parameter(torch.zeros(args.n_embd, D_DECAY_LORA))
|
|
self.time_decay_w2 = nn.Parameter(
|
|
torch.zeros(D_DECAY_LORA, args.dim_att).uniform_(-0.01, 0.01)
|
|
)
|
|
|
|
tmp = torch.zeros(args.dim_att)
|
|
for n in range(args.dim_att):
|
|
zigzag = ((n + 1) % 3 - 1) * 0.1
|
|
tmp[n] = ratio_0_to_1 * (1 - (n / (args.dim_att - 1))) + zigzag
|
|
|
|
self.time_faaaa = nn.Parameter(tmp.reshape(self.n_head, self.head_size))
|
|
|
|
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
|
|
self.receptance = nn.Linear(args.n_embd, args.dim_att, bias=False)
|
|
self.key = nn.Linear(args.n_embd, args.dim_att, bias=False)
|
|
|
|
self.value = nn.Linear(args.n_embd, args.dim_att, bias=False)
|
|
self.output = nn.Linear(args.dim_att, args.n_embd, bias=False)
|
|
self.gate = nn.Linear(args.n_embd, args.dim_att, bias=False)
|
|
self.ln_x = nn.GroupNorm(
|
|
self.n_head, args.dim_att, eps=(1e-5) * (args.head_size_divisor**2)
|
|
)
|
|
|
|
@MyFunction
|
|
def jit_func(self, x):
|
|
B, T, C = x.size()
|
|
|
|
xx = self.time_shift(x) - x
|
|
|
|
xxx = x + xx * self.time_maa_x
|
|
xxx = torch.tanh(xxx @ self.time_maa_w1).view(B * T, 5, -1).transpose(0, 1)
|
|
xxx = torch.bmm(xxx, self.time_maa_w2).view(5, B, T, -1)
|
|
mw, mk, mv, mr, mg = xxx.unbind(dim=0)
|
|
|
|
xw = x + xx * (self.time_maa_w + mw)
|
|
xk = x + xx * (self.time_maa_k + mk)
|
|
xv = x + xx * (self.time_maa_v + mv)
|
|
xr = x + xx * (self.time_maa_r + mr)
|
|
xg = x + xx * (self.time_maa_g + mg)
|
|
|
|
r = self.receptance(xr)
|
|
k = self.key(xk)
|
|
v = self.value(xv)
|
|
g = F.silu(self.gate(xg))
|
|
|
|
ww = torch.tanh(xw @ self.time_decay_w1) @ self.time_decay_w2
|
|
w = self.time_decay + ww
|
|
|
|
return r, k, v, g, w
|
|
|
|
@MyFunction
|
|
def jit_func_2(self, x, g):
|
|
B, T, C = x.size()
|
|
x = x.view(B * T, C)
|
|
|
|
x = self.ln_x(x).view(B, T, C)
|
|
x = self.output(x * g)
|
|
return x
|
|
|
|
def forward(self, x, **kwargs):
|
|
B, T, C = x.size()
|
|
H = self.n_head
|
|
|
|
r, k, v, g, w = self.jit_func(x)
|
|
x = RUN_CUDA_RWKV6(B, T, C, H, r, k, v, w, u=self.time_faaaa)
|
|
|
|
return self.jit_func_2(x, g)
|
|
|
|
|
|
class RWKV_CMix_x060(MyModule):
|
|
def __init__(self, args, layer_id):
|
|
super().__init__()
|
|
self.args = args
|
|
self.layer_id = layer_id
|
|
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
|
|
|
|
with torch.no_grad(): # fancy init of time_mix
|
|
ratio_1_to_almost0 = 1.0 - (layer_id / args.n_layer) # 1 to ~0
|
|
ddd = torch.ones(1, 1, args.n_embd)
|
|
for i in range(args.n_embd):
|
|
ddd[0, 0, i] = i / args.n_embd
|
|
self.time_maa_k = nn.Parameter(1.0 - torch.pow(ddd, ratio_1_to_almost0))
|
|
self.time_maa_r = nn.Parameter(1.0 - torch.pow(ddd, ratio_1_to_almost0))
|
|
|
|
self.key = nn.Linear(args.n_embd, args.dim_ffn, bias=False)
|
|
self.receptance = nn.Linear(args.n_embd, args.n_embd, bias=False)
|
|
self.value = nn.Linear(args.dim_ffn, args.n_embd, bias=False)
|
|
|
|
@MyFunction
|
|
def forward(self, x):
|
|
xx = self.time_shift(x) - x
|
|
xk = x + xx * self.time_maa_k
|
|
xr = x + xx * self.time_maa_r
|
|
|
|
k = self.key(xk)
|
|
k = torch.relu(k) ** 2
|
|
kv = self.value(k)
|
|
return torch.sigmoid(self.receptance(xr)) * kv
|
|
|
|
|
|
class Block(nn.Module):
|
|
def __init__(self, args, layer_id):
|
|
super().__init__()
|
|
self.args = args
|
|
self.layer_id = layer_id
|
|
|
|
self.ln1 = nn.LayerNorm(args.n_embd)
|
|
self.ln2 = nn.LayerNorm(args.n_embd)
|
|
|
|
if self.layer_id == 0:
|
|
self.ln0 = nn.LayerNorm(args.n_embd)
|
|
|
|
self.att = RWKV_Tmix_x060(args, layer_id)
|
|
|
|
self.ffn = RWKV_CMix_x060(args, layer_id)
|
|
|
|
if args.dropout > 0:
|
|
self.drop0 = nn.Dropout(p=args.dropout)
|
|
self.drop1 = nn.Dropout(p=args.dropout)
|
|
|
|
def forward(self, x, x_emb=None):
|
|
args = self.args
|
|
B, T, C = x.size()
|
|
if self.layer_id == 0:
|
|
x = self.ln0(x)
|
|
|
|
if self.args.dropout == 0:
|
|
if self.layer_id == 0 and args.pre_ffn > 0:
|
|
x = x + self.ffnPre(self.ln1(x))
|
|
else:
|
|
x = x + self.att(self.ln1(x))
|
|
x = x + self.ffn(self.ln2(x))
|
|
else:
|
|
if self.layer_id == 0 and args.pre_ffn > 0:
|
|
x = self.drop0(x + self.ffnPre(self.ln1(x)))
|
|
else:
|
|
x = self.drop0(x + self.att(self.ln1(x)))
|
|
x = self.drop1(x + self.ffn(self.ln2(x)))
|
|
|
|
return x
|
|
|
|
|
|
class RWKVLayer(nn.Module):
|
|
def __init__(self, args, layer_id):
|
|
super().__init__()
|
|
self.args = args
|
|
self.layer_id = layer_id
|
|
if args.dim_ffn is None:
|
|
args.dim_ffn = int((args.n_embd * 3.5) // 32 * 32)
|
|
self.ln0 = None
|
|
if self.layer_id == 0 and args.get("ln0", True):
|
|
self.ln0 = nn.LayerNorm(args.n_embd)
|
|
|
|
self.ln1 = None
|
|
if args.get("ln1", True):
|
|
self.ln1 = nn.LayerNorm(args.n_embd)
|
|
|
|
self.att = RWKV_Tmix_x060(args, layer_id)
|
|
|
|
self.ln2 = None
|
|
self.ffn = None
|
|
if args.get("use_rwkv_ffn", True):
|
|
self.ln2 = nn.LayerNorm(args.n_embd)
|
|
self.ffn = RWKV_CMix_x060(args, layer_id)
|
|
|
|
if args.dropout > 0:
|
|
self.drop0 = nn.Dropout(p=args.dropout)
|
|
self.drop1 = nn.Dropout(p=args.dropout)
|
|
|
|
# init
|
|
if args.get("init_rwkv", True):
|
|
print("init_rwkv")
|
|
nn.init.orthogonal_(self.att.receptance.weight, gain=1)
|
|
nn.init.orthogonal_(self.att.key.weight, gain=0.1)
|
|
nn.init.orthogonal_(self.att.value.weight, gain=1)
|
|
nn.init.orthogonal_(self.att.gate.weight, gain=0.1)
|
|
nn.init.zeros_(self.att.output.weight)
|
|
|
|
nn.init.orthogonal_(self.ffn.key.weight, gain=1)
|
|
nn.init.zeros_(self.ffn.value.weight)
|
|
nn.init.zeros_(self.ffn.receptance.weight)
|
|
scale = ((1 + layer_id) / args.get("n_layer")) ** 0.7
|
|
|
|
if self.ln0 is not None:
|
|
nn.init.constant_(self.ln0.weight, scale)
|
|
if self.ln1 is not None:
|
|
nn.init.constant_(self.ln1.weight, scale)
|
|
if self.ln2 is not None:
|
|
nn.init.constant_(self.ln2.weight, scale)
|
|
|
|
def forward(self, x, x_emb=None, mask=None, **kwargs):
|
|
|
|
args = self.args
|
|
if args.get("datatype", "bf16") == "bf16":
|
|
x = x.bfloat16()
|
|
B, T, C = x.size()
|
|
if self.layer_id == 0 and self.ln0 is not None:
|
|
x = self.ln0(x)
|
|
|
|
if self.args.dropout == 0:
|
|
if self.ln1 is None:
|
|
x = x + self.att(x)
|
|
else:
|
|
x = x + self.att(self.ln1(x))
|
|
if self.ffn is not None:
|
|
x = x + self.ffn(self.ln2(x))
|
|
else:
|
|
if self.ln1 is None:
|
|
x = self.drop0(x + self.att(x))
|
|
else:
|
|
x = self.drop0(x + self.att(self.ln1(x)))
|
|
if self.ffn is not None:
|
|
x = self.drop1(x + self.ffn(self.ln2(x)))
|
|
|
|
if args.get("datatype", "bf16") == "bf16":
|
|
x = x.to(torch.float32)
|
|
return x
|
|
|
|
|
|
class RWKV(nn.Module):
|
|
def __init__(self, args):
|
|
super().__init__()
|
|
self.args = args
|
|
if not hasattr(args, "dim_att"):
|
|
args.dim_att = args.n_embd
|
|
if not hasattr(args, "dim_ffn"):
|
|
if "-f4" in os.environ["RWKV_MY_TESTING"]:
|
|
args.dim_ffn = int((args.n_embd * 4) // 32 * 32)
|
|
else:
|
|
args.dim_ffn = int((args.n_embd * 3.5) // 32 * 32) # default = 3.5x emb size
|
|
if not hasattr(args, "tiny_att_layer"):
|
|
args.tiny_att_layer = -1
|
|
if not hasattr(args, "tiny_att_dim"):
|
|
args.tiny_att_dim = -1
|
|
assert args.n_embd % 32 == 0
|
|
assert args.dim_att % 32 == 0
|
|
assert args.dim_ffn % 32 == 0
|
|
|
|
self.emb = nn.Embedding(args.vocab_size, args.n_embd)
|
|
|
|
self.blocks = nn.ModuleList([Block(args, i) for i in range(args.n_layer)])
|
|
|
|
self.ln_out = nn.LayerNorm(args.n_embd)
|
|
self.head = nn.Linear(args.n_embd, args.vocab_size, bias=False)
|
|
|
|
if args.dropout > 0:
|
|
self.drop0 = nn.Dropout(p=args.dropout)
|
|
|
|
def forward(self, idx):
|
|
args = self.args
|
|
B, T = idx.size()
|
|
assert T <= args.ctx_len, "Cannot forward, model ctx_len is exhausted."
|
|
|
|
x = self.emb(idx)
|
|
x_emb = x
|
|
|
|
if args.dropout > 0:
|
|
x = self.drop0(x)
|
|
if args.tiny_att_dim > 0:
|
|
for block in self.blocks:
|
|
if args.grad_cp == 1:
|
|
x = deepspeed.checkpointing.checkpoint(block, x, x_emb)
|
|
else:
|
|
x = block(x, x_emb)
|
|
else:
|
|
for block in self.blocks:
|
|
if args.grad_cp == 1:
|
|
x = deepspeed.checkpointing.checkpoint(block, x)
|
|
else:
|
|
x = block(x)
|
|
|
|
x = self.ln_out(x)
|
|
|
|
if args.head_qk > 0:
|
|
q = self.head_q(x)[:, :T, :]
|
|
k = self.head_k(x)[:, :T, :]
|
|
c = (q @ k.transpose(-2, -1)) * (1.0 / args.head_qk)
|
|
c = c.masked_fill(self.copy_mask[:T, :T] == 0, 0)
|
|
|
|
if "32" in os.environ["RWKV_FLOAT_MODE"]:
|
|
c = c @ F.one_hot(idx, num_classes=args.vocab_size)
|
|
elif os.environ["RWKV_FLOAT_MODE"] == "fp16":
|
|
c = c @ F.one_hot(idx, num_classes=args.vocab_size).half()
|
|
elif os.environ["RWKV_FLOAT_MODE"] == "bf16":
|
|
c = c @ F.one_hot(idx, num_classes=args.vocab_size).bfloat16()
|
|
|
|
x = self.head(x) + c
|
|
else:
|
|
x = self.head(x)
|
|
|
|
return x
|