FunASR/funasr/models/sense_voice/rwkv_v4.py

413 lines
14 KiB
Python

########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
import os, math, gc, importlib
import torch
# torch._C._jit_set_profiling_executor(True)
# torch._C._jit_set_profiling_mode(True)
import torch.nn as nn
from torch.nn import functional as F
def __nop(ob):
return ob
MyModule = nn.Module
MyFunction = __nop
if "RWKV_JIT_ON" in os.environ and os.environ["RWKV_JIT_ON"] == "1":
MyModule = torch.jit.ScriptModule
MyFunction = torch.jit.script_method
########################################################################################################
# CUDA Kernel
########################################################################################################
wkv_cuda = None
def load_rwkv_kernel(
HEAD_SIZE: int = 64,
RWKV_CTXLEN: int = 512,
T_MAX: int = 512,
):
from torch.utils.cpp_extension import load
global wkv_cuda
if wkv_cuda is not None:
return
absolute_file_path = os.path.abspath(__file__)
cur_dir = os.path.dirname(absolute_file_path)
wkv_cuda = load(
name="wkv",
sources=[f"{cur_dir}/cuda/wkv_op.cpp", f"{cur_dir}/cuda/wkv_cuda.cu"],
verbose=True,
extra_cuda_cflags=[
"-res-usage",
"--maxrregcount 60",
"--use_fast_math",
"-O3",
"-Xptxas -O3",
f"-DTmax={T_MAX}",
],
)
class WKV(torch.autograd.Function):
@staticmethod
def forward(ctx, B, T, C, w, u, k, v):
ctx.B = B
ctx.T = T
ctx.C = C
# assert T <= T_MAX
assert B * C % min(C, 1024) == 0
if "32" in os.environ["RWKV_FLOAT_MODE"]:
w = -torch.exp(w.contiguous())
u = u.contiguous()
k = k.contiguous()
v = v.contiguous()
else:
w = -torch.exp(w.float().contiguous())
u = u.float().contiguous()
k = k.float().contiguous()
v = v.float().contiguous()
ctx.save_for_backward(w, u, k, v)
y = torch.empty((B, T, C), device="cuda", memory_format=torch.contiguous_format)
wkv_cuda.forward(B, T, C, w, u, k, v, y)
if "32" in os.environ["RWKV_FLOAT_MODE"]:
return y
elif os.environ["RWKV_FLOAT_MODE"] == "fp16":
return y.half()
elif os.environ["RWKV_FLOAT_MODE"] == "bf16":
return y.bfloat16()
@staticmethod
def backward(ctx, gy):
B = ctx.B
T = ctx.T
C = ctx.C
assert T <= T_MAX
assert B * C % min(C, 1024) == 0
w, u, k, v = ctx.saved_tensors
gw = torch.zeros((B, C), device="cuda").contiguous()
gu = torch.zeros((B, C), device="cuda").contiguous()
gk = torch.zeros((B, T, C), device="cuda").contiguous()
gv = torch.zeros((B, T, C), device="cuda").contiguous()
if "32" in os.environ["RWKV_FLOAT_MODE"]:
wkv_cuda.backward(B, T, C, w, u, k, v, gy.contiguous(), gw, gu, gk, gv)
else:
wkv_cuda.backward(B, T, C, w, u, k, v, gy.float().contiguous(), gw, gu, gk, gv)
gw = torch.sum(gw, dim=0)
gu = torch.sum(gu, dim=0)
if "32" in os.environ["RWKV_FLOAT_MODE"]:
return (None, None, None, gw, gu, gk, gv)
elif os.environ["RWKV_FLOAT_MODE"] == "fp16":
return (None, None, None, gw.half(), gu.half(), gk.half(), gv.half())
elif os.environ["RWKV_FLOAT_MODE"] == "bf16":
return (None, None, None, gw.bfloat16(), gu.bfloat16(), gk.bfloat16(), gv.bfloat16())
def RUN_CUDA(B, T, C, w, u, k, v):
return WKV.apply(B, T, C, w.cuda(), u.cuda(), k.cuda(), v.cuda())
class RWKV_TimeMix(torch.jit.ScriptModule):
def __init__(self, config, layer_id):
super().__init__()
load_rwkv_kernel()
self.layer_id = layer_id
self.ctx_len = config.ctx_len
self.n_embd = config.n_embd
attn_sz = config.n_embd
with torch.no_grad(): # fancy init
ratio_0_to_1 = layer_id / (config.n_layer - 1) # 0 to 1
ratio_1_to_almost0 = 1.0 - (layer_id / config.n_layer) # 1 to ~0
# fancy time_decay
decay_speed = torch.ones(attn_sz)
for h in range(attn_sz):
decay_speed[h] = -5 + 8 * (h / (attn_sz - 1)) ** (0.7 + 1.3 * ratio_0_to_1)
self.time_decay = nn.Parameter(decay_speed)
# print(layer_id, self.time_decay.flatten()[:3].cpu().numpy(), '...', self.time_decay.flatten()[-3:].cpu().numpy())
# fancy time_first
zigzag = torch.tensor([(i + 1) % 3 - 1 for i in range(attn_sz)]) * 0.5
self.time_first = nn.Parameter(torch.ones(attn_sz) * math.log(0.3) + zigzag)
# fancy time_mix
x = torch.ones(1, 1, config.n_embd)
for i in range(config.n_embd):
x[0, 0, i] = i / config.n_embd
self.time_mix_k = nn.Parameter(torch.pow(x, ratio_1_to_almost0))
self.time_mix_v = nn.Parameter(torch.pow(x, ratio_1_to_almost0) + 0.3 * ratio_0_to_1)
self.time_mix_r = nn.Parameter(torch.pow(x, 0.5 * ratio_1_to_almost0))
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
self.key = nn.Linear(config.n_embd, attn_sz, bias=False)
self.value = nn.Linear(config.n_embd, attn_sz, bias=False)
self.receptance = nn.Linear(config.n_embd, attn_sz, bias=False)
self.output = nn.Linear(attn_sz, config.n_embd, bias=False)
self.key.scale_init = 0
self.receptance.scale_init = 0
self.output.scale_init = 0
@torch.jit.script_method
def jit_func(self, x):
# Mix x with the previous timestep to produce xk, xv, xr
xx = self.time_shift(x)
xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
xv = x * self.time_mix_v + xx * (1 - self.time_mix_v)
xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)
# Use xk, xv, xr to produce k, v, r
k = self.key(xk)
v = self.value(xv)
r = self.receptance(xr)
sr = torch.sigmoid(r)
return sr, k, v
def forward(self, x):
B, T, C = x.size() # x = (Batch,Time,Channel)
sr, k, v = self.jit_func(x)
rwkv = sr * RUN_CUDA(B, T, C, self.time_decay, self.time_first, k, v)
rwkv = self.output(rwkv)
return rwkv
class RWKV_ChannelMix(torch.jit.ScriptModule):
def __init__(self, config, layer_id):
super().__init__()
self.layer_id = layer_id
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
with torch.no_grad(): # fancy init of time_mix
ratio_1_to_almost0 = 1.0 - (layer_id / config.n_layer) # 1 to ~0
x = torch.ones(1, 1, config.n_embd)
for i in range(config.n_embd):
x[0, 0, i] = i / config.n_embd
self.time_mix_k = nn.Parameter(torch.pow(x, ratio_1_to_almost0))
self.time_mix_r = nn.Parameter(torch.pow(x, ratio_1_to_almost0))
hidden_sz = 4 * config.n_embd
self.key = nn.Linear(config.n_embd, hidden_sz, bias=False)
self.receptance = nn.Linear(config.n_embd, config.n_embd, bias=False)
self.value = nn.Linear(hidden_sz, config.n_embd, bias=False)
self.value.scale_init = 0
self.receptance.scale_init = 0
@torch.jit.script_method
def forward(self, x):
xx = self.time_shift(x)
xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)
k = self.key(xk)
k = torch.square(torch.relu(k))
kv = self.value(k)
rkv = torch.sigmoid(self.receptance(xr)) * kv
return rkv
# class Block(nn.Module):
# def __init__(self, args, layer_id):
# super().__init__()
# self.args = args
# self.layer_id = layer_id
#
# self.ln1 = nn.LayerNorm(args.n_embd)
# self.ln2 = nn.LayerNorm(args.n_embd)
#
# if self.layer_id == 0:
# self.ln0 = nn.LayerNorm(args.n_embd)
#
# self.att = RWKV_Tmix_x060(args, layer_id)
#
# self.ffn = RWKV_CMix_x060(args, layer_id)
#
# if args.dropout > 0:
# self.drop0 = nn.Dropout(p=args.dropout)
# self.drop1 = nn.Dropout(p=args.dropout)
#
# def forward(self, x, x_emb=None):
# args = self.args
# B, T, C = x.size()
# if self.layer_id == 0:
# x = self.ln0(x)
#
# if self.args.dropout == 0:
# if self.layer_id == 0 and args.pre_ffn > 0:
# x = x + self.ffnPre(self.ln1(x))
# else:
# x = x + self.att(self.ln1(x))
# x = x + self.ffn(self.ln2(x))
# else:
# if self.layer_id == 0 and args.pre_ffn > 0:
# x = self.drop0(x + self.ffnPre(self.ln1(x)))
# else:
# x = self.drop0(x + self.att(self.ln1(x)))
# x = self.drop1(x + self.ffn(self.ln2(x)))
#
# return x
class RWKVLayer(nn.Module):
def __init__(self, args, layer_id):
super().__init__()
self.args = args
self.layer_id = layer_id
if args.dim_ffn is None:
args.dim_ffn = int((args.n_embd * 3.5) // 32 * 32)
self.ln0 = None
if self.layer_id == 0 and args.get("ln0", True):
self.ln0 = nn.LayerNorm(args.n_embd)
self.ln1 = None
if args.get("ln1", True):
self.ln1 = nn.LayerNorm(args.n_embd)
self.ln2 = nn.LayerNorm(args.n_embd)
self.att = RWKV_TimeMix(args, layer_id)
self.ffn = RWKV_ChannelMix(args, layer_id)
if args.dropout > 0:
self.drop0 = nn.Dropout(p=args.dropout)
self.drop1 = nn.Dropout(p=args.dropout)
# init
if args.get("init_rwkv", True):
print("init_rwkv")
nn.init.orthogonal_(self.att.receptance.weight, gain=1)
nn.init.orthogonal_(self.att.key.weight, gain=0.1)
nn.init.orthogonal_(self.att.value.weight, gain=1)
nn.init.orthogonal_(self.att.gate.weight, gain=0.1)
nn.init.zeros_(self.att.output.weight)
nn.init.orthogonal_(self.ffn.key.weight, gain=1)
nn.init.zeros_(self.ffn.value.weight)
nn.init.zeros_(self.ffn.receptance.weight)
scale = ((1 + layer_id) / args.get("n_layer")) ** 0.7
nn.init.constant_(self.ln2.weight, scale)
if self.ln0 is not None:
nn.init.constant_(self.ln0.weight, scale)
if self.ln1 is not None:
nn.init.constant_(self.ln1.weight, scale)
def forward(self, x, x_emb=None, mask=None, **kwargs):
args = self.args
if args.get("datatype", "bf16") == "bf16":
x = x.bfloat16()
B, T, C = x.size()
if self.layer_id == 0 and self.ln0 is not None:
x = self.ln0(x)
if self.args.dropout == 0:
if self.ln1 is None:
x = x + self.att(x)
else:
x = x + self.att(self.ln1(x))
x = x + self.ffn(self.ln2(x))
else:
if self.ln1 is None:
x = self.drop0(x + self.att(x))
else:
x = self.drop0(x + self.att(self.ln1(x)))
x = self.drop1(x + self.ffn(self.ln2(x)))
if args.get("datatype", "bf16") == "bf16":
x = x.to(torch.float32)
return x
class RWKV(nn.Module):
def __init__(self, args):
super().__init__()
self.args = args
if not hasattr(args, "dim_att"):
args.dim_att = args.n_embd
if not hasattr(args, "dim_ffn"):
if "-f4" in os.environ["RWKV_MY_TESTING"]:
args.dim_ffn = int((args.n_embd * 4) // 32 * 32)
else:
args.dim_ffn = int((args.n_embd * 3.5) // 32 * 32) # default = 3.5x emb size
if not hasattr(args, "tiny_att_layer"):
args.tiny_att_layer = -1
if not hasattr(args, "tiny_att_dim"):
args.tiny_att_dim = -1
assert args.n_embd % 32 == 0
assert args.dim_att % 32 == 0
assert args.dim_ffn % 32 == 0
self.emb = nn.Embedding(args.vocab_size, args.n_embd)
self.blocks = nn.ModuleList([Block(args, i) for i in range(args.n_layer)])
self.ln_out = nn.LayerNorm(args.n_embd)
self.head = nn.Linear(args.n_embd, args.vocab_size, bias=False)
if args.dropout > 0:
self.drop0 = nn.Dropout(p=args.dropout)
def forward(self, idx):
args = self.args
B, T = idx.size()
assert T <= args.ctx_len, "Cannot forward, model ctx_len is exhausted."
x = self.emb(idx)
x_emb = x
if args.dropout > 0:
x = self.drop0(x)
if args.tiny_att_dim > 0:
for block in self.blocks:
if args.grad_cp == 1:
x = deepspeed.checkpointing.checkpoint(block, x, x_emb)
else:
x = block(x, x_emb)
else:
for block in self.blocks:
if args.grad_cp == 1:
x = deepspeed.checkpointing.checkpoint(block, x)
else:
x = block(x)
x = self.ln_out(x)
if args.head_qk > 0:
q = self.head_q(x)[:, :T, :]
k = self.head_k(x)[:, :T, :]
c = (q @ k.transpose(-2, -1)) * (1.0 / args.head_qk)
c = c.masked_fill(self.copy_mask[:T, :T] == 0, 0)
if "32" in os.environ["RWKV_FLOAT_MODE"]:
c = c @ F.one_hot(idx, num_classes=args.vocab_size)
elif os.environ["RWKV_FLOAT_MODE"] == "fp16":
c = c @ F.one_hot(idx, num_classes=args.vocab_size).half()
elif os.environ["RWKV_FLOAT_MODE"] == "bf16":
c = c @ F.one_hot(idx, num_classes=args.vocab_size).bfloat16()
x = self.head(x) + c
else:
x = self.head(x)
return x