FunASR/funasr/models/seaco_paraformer/export_meta.py

198 lines
6.5 KiB
Python

#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import torch
from funasr.register import tables
class ContextualEmbedderExport(torch.nn.Module):
def __init__(
self,
model,
max_seq_len=512,
feats_dim=560,
**kwargs,
):
super().__init__()
self.embedding = model.decoder.embed # model.bias_embed
model.bias_encoder.batch_first = False
self.bias_encoder = model.bias_encoder
def forward(self, hotword):
hotword = self.embedding(hotword).transpose(0, 1) # batch second
hw_embed, (_, _) = self.bias_encoder(hotword)
return hw_embed
def export_dummy_inputs(self):
hotword = torch.tensor(
[
[10, 11, 12, 13, 14, 10, 11, 12, 13, 14],
[100, 101, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[10, 11, 12, 13, 14, 10, 11, 12, 13, 14],
[100, 101, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
],
dtype=torch.int32,
)
# hotword_length = torch.tensor([10, 2, 1], dtype=torch.int32)
return hotword
def export_input_names(self):
return ["hotword"]
def export_output_names(self):
return ["hw_embed"]
def export_dynamic_axes(self):
return {
"hotword": {
0: "num_hotwords",
},
"hw_embed": {
0: "num_hotwords",
},
}
def export_name(self):
return "model_eb.onnx"
def export_rebuild_model(model, **kwargs):
model.device = kwargs.get("device")
is_onnx = kwargs.get("type", "onnx") == "onnx"
encoder_class = tables.encoder_classes.get(kwargs["encoder"] + "Export")
model.encoder = encoder_class(model.encoder, onnx=is_onnx)
predictor_class = tables.predictor_classes.get(kwargs["predictor"] + "Export")
model.predictor = predictor_class(model.predictor, onnx=is_onnx)
# before decoder convert into export class
embedder_class = ContextualEmbedderExport
embedder_model = embedder_class(model, onnx=is_onnx)
decoder_class = tables.decoder_classes.get(kwargs["decoder"] + "Export")
model.decoder = decoder_class(model.decoder, onnx=is_onnx)
seaco_decoder_class = tables.decoder_classes.get(kwargs["seaco_decoder"] + "Export")
model.seaco_decoder = seaco_decoder_class(model.seaco_decoder, onnx=is_onnx)
from funasr.utils.torch_function import sequence_mask
model.make_pad_mask = sequence_mask(kwargs["max_seq_len"], flip=False)
from funasr.utils.torch_function import sequence_mask
model.make_pad_mask = sequence_mask(kwargs["max_seq_len"], flip=False)
model.feats_dim = 560
model.NOBIAS = 8377
import copy
import types
backbone_model = copy.copy(model)
# backbone
backbone_model.forward = types.MethodType(export_backbone_forward, backbone_model)
backbone_model.export_dummy_inputs = types.MethodType(
export_backbone_dummy_inputs, backbone_model
)
backbone_model.export_input_names = types.MethodType(
export_backbone_input_names, backbone_model
)
backbone_model.export_output_names = types.MethodType(
export_backbone_output_names, backbone_model
)
backbone_model.export_dynamic_axes = types.MethodType(
export_backbone_dynamic_axes, backbone_model
)
backbone_model.export_name = types.MethodType(export_backbone_name, backbone_model)
return backbone_model, embedder_model
def export_backbone_forward(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
bias_embed: torch.Tensor,
# lmbd: float,
):
# a. To device
batch = {"speech": speech, "speech_lengths": speech_lengths}
enc, enc_len = self.encoder(**batch)
mask = self.make_pad_mask(enc_len)[:, None, :]
pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = self.predictor(enc, mask)
pre_token_length = pre_token_length.floor().type(torch.int32)
decoder_out, decoder_hidden, _ = self.decoder(
enc, enc_len, pre_acoustic_embeds, pre_token_length, return_hidden=True, return_both=True
)
decoder_out = torch.log_softmax(decoder_out, dim=-1)
# seaco forward
B, N, D = bias_embed.shape
_contextual_length = torch.ones(B) * N
# ASF
hotword_scores = self.seaco_decoder.forward_asf6(
bias_embed, _contextual_length, decoder_hidden, pre_token_length
)
hotword_scores = hotword_scores[0].sum(0).sum(0)
# _ = self.decoder2(bias_embed, _contextual_length, decoder_hidden, pre_token_length)
# hotword_scores = self.decoder2.model.decoders[-1].attn_mat[0][0].sum(0).sum(0)
dec_filter = torch.sort(hotword_scores, descending=True)[1][:51]
contextual_info = bias_embed[:, dec_filter]
num_hot_word = contextual_info.shape[1]
_contextual_length = torch.Tensor([num_hot_word]).int().repeat(B).to(enc.device)
# again
cif_attended, _ = self.seaco_decoder(
contextual_info, _contextual_length, pre_acoustic_embeds, pre_token_length
)
dec_attended, _ = self.seaco_decoder(
contextual_info, _contextual_length, decoder_hidden, pre_token_length
)
merged = cif_attended + dec_attended
dha_output = self.hotword_output_layer(merged)
dha_pred = torch.log_softmax(dha_output, dim=-1)
# merging logits
dha_ids = dha_pred.max(-1)[-1]
dha_mask = (dha_ids == self.NOBIAS).int().unsqueeze(-1)
decoder_out = decoder_out * dha_mask + dha_pred * (1 - dha_mask)
return decoder_out, pre_token_length, alphas
def export_backbone_dummy_inputs(self):
speech = torch.randn(2, 30, self.feats_dim)
speech_lengths = torch.tensor([15, 30], dtype=torch.int32)
bias_embed = torch.randn(2, 1, 512)
return (speech, speech_lengths, bias_embed)
def export_backbone_input_names(self):
return ["speech", "speech_lengths", "bias_embed"]
def export_backbone_output_names(self):
return ["logits", "token_num", "alphas"]
def export_backbone_dynamic_axes(self):
return {
"speech": {0: "batch_size", 1: "feats_length"},
"speech_lengths": {
0: "batch_size",
},
"bias_embed": {0: "batch_size", 1: "num_hotwords"},
"logits": {0: "batch_size", 1: "logits_length"},
"pre_acoustic_embeds": {1: "feats_length1"},
}
def export_backbone_name(self):
return "model.onnx"