251 lines
8.1 KiB
Python
251 lines
8.1 KiB
Python
#!/usr/bin/env python3
|
|
# -*- encoding: utf-8 -*-
|
|
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
|
|
# MIT License (https://opensource.org/licenses/MIT)
|
|
|
|
import math
|
|
import torch
|
|
from typing import Optional, Tuple, Union
|
|
from funasr.models.transformer.utils.nets_utils import pad_to_len
|
|
|
|
|
|
class TooShortUttError(Exception):
|
|
"""Raised when the utt is too short for subsampling.
|
|
|
|
Args:
|
|
message (str): Message for error catch
|
|
actual_size (int): the short size that cannot pass the subsampling
|
|
limit (int): the limit size for subsampling
|
|
|
|
"""
|
|
|
|
def __init__(self, message, actual_size, limit):
|
|
"""Construct a TooShortUttError for error handler."""
|
|
super().__init__(message)
|
|
self.actual_size = actual_size
|
|
self.limit = limit
|
|
|
|
|
|
def check_short_utt(ins, size):
|
|
"""Check if the utterance is too short for subsampling."""
|
|
if isinstance(ins, Conv2dSubsampling2) and size < 3:
|
|
return True, 3
|
|
if isinstance(ins, Conv2dSubsampling) and size < 7:
|
|
return True, 7
|
|
if isinstance(ins, Conv2dSubsampling6) and size < 11:
|
|
return True, 11
|
|
if isinstance(ins, Conv2dSubsampling8) and size < 15:
|
|
return True, 15
|
|
return False, -1
|
|
|
|
|
|
class RWKVConvInput(torch.nn.Module):
|
|
"""Streaming ConvInput module definition.
|
|
Args:
|
|
input_size: Input size.
|
|
conv_size: Convolution size.
|
|
subsampling_factor: Subsampling factor.
|
|
output_size: Block output dimension.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
input_size: int,
|
|
conv_size: Union[int, Tuple],
|
|
subsampling_factor: int = 4,
|
|
conv_kernel_size: int = 3,
|
|
output_size: Optional[int] = None,
|
|
) -> None:
|
|
"""Construct a ConvInput object."""
|
|
super().__init__()
|
|
if subsampling_factor == 1:
|
|
conv_size1, conv_size2, conv_size3 = conv_size
|
|
|
|
self.conv = torch.nn.Sequential(
|
|
torch.nn.Conv2d(
|
|
1, conv_size1, conv_kernel_size, stride=1, padding=(conv_kernel_size - 1) // 2
|
|
),
|
|
torch.nn.ReLU(),
|
|
torch.nn.Conv2d(
|
|
conv_size1,
|
|
conv_size1,
|
|
conv_kernel_size,
|
|
stride=[1, 2],
|
|
padding=(conv_kernel_size - 1) // 2,
|
|
),
|
|
torch.nn.ReLU(),
|
|
torch.nn.Conv2d(
|
|
conv_size1,
|
|
conv_size2,
|
|
conv_kernel_size,
|
|
stride=1,
|
|
padding=(conv_kernel_size - 1) // 2,
|
|
),
|
|
torch.nn.ReLU(),
|
|
torch.nn.Conv2d(
|
|
conv_size2,
|
|
conv_size2,
|
|
conv_kernel_size,
|
|
stride=[1, 2],
|
|
padding=(conv_kernel_size - 1) // 2,
|
|
),
|
|
torch.nn.ReLU(),
|
|
torch.nn.Conv2d(
|
|
conv_size2,
|
|
conv_size3,
|
|
conv_kernel_size,
|
|
stride=1,
|
|
padding=(conv_kernel_size - 1) // 2,
|
|
),
|
|
torch.nn.ReLU(),
|
|
torch.nn.Conv2d(
|
|
conv_size3,
|
|
conv_size3,
|
|
conv_kernel_size,
|
|
stride=[1, 2],
|
|
padding=(conv_kernel_size - 1) // 2,
|
|
),
|
|
torch.nn.ReLU(),
|
|
)
|
|
|
|
output_proj = conv_size3 * ((input_size // 2) // 2)
|
|
|
|
self.subsampling_factor = 1
|
|
|
|
self.stride_1 = 1
|
|
|
|
self.create_new_mask = self.create_new_vgg_mask
|
|
|
|
else:
|
|
conv_size1, conv_size2, conv_size3 = conv_size
|
|
|
|
kernel_1 = int(subsampling_factor / 2)
|
|
|
|
self.conv = torch.nn.Sequential(
|
|
torch.nn.Conv2d(
|
|
1, conv_size1, conv_kernel_size, stride=1, padding=(conv_kernel_size - 1) // 2
|
|
),
|
|
torch.nn.ReLU(),
|
|
torch.nn.Conv2d(
|
|
conv_size1,
|
|
conv_size1,
|
|
conv_kernel_size,
|
|
stride=[kernel_1, 2],
|
|
padding=(conv_kernel_size - 1) // 2,
|
|
),
|
|
torch.nn.ReLU(),
|
|
torch.nn.Conv2d(
|
|
conv_size1,
|
|
conv_size2,
|
|
conv_kernel_size,
|
|
stride=1,
|
|
padding=(conv_kernel_size - 1) // 2,
|
|
),
|
|
torch.nn.ReLU(),
|
|
torch.nn.Conv2d(
|
|
conv_size2,
|
|
conv_size2,
|
|
conv_kernel_size,
|
|
stride=[2, 2],
|
|
padding=(conv_kernel_size - 1) // 2,
|
|
),
|
|
torch.nn.ReLU(),
|
|
torch.nn.Conv2d(
|
|
conv_size2,
|
|
conv_size3,
|
|
conv_kernel_size,
|
|
stride=1,
|
|
padding=(conv_kernel_size - 1) // 2,
|
|
),
|
|
torch.nn.ReLU(),
|
|
torch.nn.Conv2d(
|
|
conv_size3,
|
|
conv_size3,
|
|
conv_kernel_size,
|
|
stride=1,
|
|
padding=(conv_kernel_size - 1) // 2,
|
|
),
|
|
torch.nn.ReLU(),
|
|
)
|
|
|
|
output_proj = conv_size3 * ((input_size // 2) // 2)
|
|
|
|
self.subsampling_factor = subsampling_factor
|
|
|
|
self.create_new_mask = self.create_new_vgg_mask
|
|
|
|
self.stride_1 = kernel_1
|
|
|
|
self.min_frame_length = 7
|
|
|
|
if output_size is not None:
|
|
self.output = torch.nn.Linear(output_proj, output_size)
|
|
self.output_size = output_size
|
|
else:
|
|
self.output = None
|
|
self.output_size = output_proj
|
|
|
|
def forward(
|
|
self, x: torch.Tensor, mask: Optional[torch.Tensor], chunk_size: Optional[torch.Tensor]
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""Encode input sequences.
|
|
Args:
|
|
x: ConvInput input sequences. (B, T, D_feats)
|
|
mask: Mask of input sequences. (B, 1, T)
|
|
Returns:
|
|
x: ConvInput output sequences. (B, sub(T), D_out)
|
|
mask: Mask of output sequences. (B, 1, sub(T))
|
|
"""
|
|
if mask is not None:
|
|
mask = self.create_new_mask(mask)
|
|
olens = max(mask.eq(0).sum(1))
|
|
|
|
b, t, f = x.size()
|
|
x = x.unsqueeze(1) # (b. 1. t. f)
|
|
|
|
if chunk_size is not None:
|
|
max_input_length = int(
|
|
chunk_size
|
|
* self.subsampling_factor
|
|
* (math.ceil(float(t) / (chunk_size * self.subsampling_factor)))
|
|
)
|
|
x = map(lambda inputs: pad_to_len(inputs, max_input_length, 1), x)
|
|
x = list(x)
|
|
x = torch.stack(x, dim=0)
|
|
N_chunks = max_input_length // (chunk_size * self.subsampling_factor)
|
|
x = x.view(b * N_chunks, 1, chunk_size * self.subsampling_factor, f)
|
|
|
|
x = self.conv(x)
|
|
|
|
_, c, _, f = x.size()
|
|
if chunk_size is not None:
|
|
x = x.transpose(1, 2).contiguous().view(b, -1, c * f)[:, :olens, :]
|
|
else:
|
|
x = x.transpose(1, 2).contiguous().view(b, -1, c * f)
|
|
|
|
if self.output is not None:
|
|
x = self.output(x)
|
|
|
|
return x, mask[:, :olens][:, : x.size(1)]
|
|
|
|
def create_new_vgg_mask(self, mask: torch.Tensor) -> torch.Tensor:
|
|
"""Create a new mask for VGG output sequences.
|
|
Args:
|
|
mask: Mask of input sequences. (B, T)
|
|
Returns:
|
|
mask: Mask of output sequences. (B, sub(T))
|
|
"""
|
|
if self.subsampling_factor > 1:
|
|
return mask[:, ::2][:, :: self.stride_1]
|
|
else:
|
|
return mask
|
|
|
|
def get_size_before_subsampling(self, size: int) -> int:
|
|
"""Return the original size before subsampling for a given size.
|
|
Args:
|
|
size: Number of frames after subsampling.
|
|
Returns:
|
|
: Number of frames before subsampling.
|
|
"""
|
|
return size * self.subsampling_factor
|