789 lines
29 KiB
Python
789 lines
29 KiB
Python
import logging
|
||
from typing import Union, Dict, List, Tuple, Optional
|
||
|
||
import time
|
||
import torch
|
||
import torch.nn as nn
|
||
import torch.nn.functional as F
|
||
from torch.cuda.amp import autocast
|
||
|
||
from funasr.models.scama.utils import sequence_mask
|
||
from funasr.losses.label_smoothing_loss import LabelSmoothingLoss
|
||
from funasr.models.ctc.ctc import CTC
|
||
from funasr.models.transformer.utils.add_sos_eos import add_sos_eos
|
||
from funasr.metrics.compute_acc import th_accuracy, compute_accuracy
|
||
|
||
# from funasr.models.e2e_asr_common import ErrorCalculator
|
||
from funasr.train_utils.device_funcs import force_gatherable
|
||
from funasr.utils.load_utils import load_audio_text_image_video, extract_fbank
|
||
from funasr.utils import postprocess_utils
|
||
from funasr.models.paraformer.cif_predictor import mae_loss
|
||
from funasr.utils.datadir_writer import DatadirWriter
|
||
from funasr.register import tables
|
||
|
||
|
||
@tables.register("model_classes", "LLMASRNAR")
|
||
class LLMASRNAR(nn.Module):
|
||
""" """
|
||
|
||
def __init__(
|
||
self,
|
||
specaug: str = None,
|
||
specaug_conf: dict = None,
|
||
normalize: str = None,
|
||
normalize_conf: dict = None,
|
||
encoder: str = None,
|
||
encoder_conf: dict = None,
|
||
decoder: str = None,
|
||
decoder_conf: dict = None,
|
||
ctc: str = None,
|
||
ctc_conf: dict = None,
|
||
ctc_weight: float = 0.5,
|
||
llm: str = None,
|
||
llm_conf: dict = None,
|
||
adaptor: str = None,
|
||
adaptor_conf: dict = None,
|
||
input_size: int = 80,
|
||
vocab_size: int = -1,
|
||
ignore_id: int = -1,
|
||
blank_id: int = 0,
|
||
sos: int = 1,
|
||
eos: int = 2,
|
||
lsm_weight: float = 0.0,
|
||
length_normalized_loss: bool = False,
|
||
report_cer: bool = True,
|
||
report_wer: bool = True,
|
||
sym_space: str = "<space>",
|
||
sym_blank: str = "<blank>",
|
||
# extract_feats_in_collect_stats: bool = True,
|
||
share_embedding: bool = False,
|
||
# preencoder: Optional[AbsPreEncoder] = None,
|
||
# postencoder: Optional[AbsPostEncoder] = None,
|
||
**kwargs,
|
||
):
|
||
|
||
super().__init__()
|
||
|
||
if specaug is not None:
|
||
specaug_class = tables.specaug_classes.get(specaug)
|
||
specaug = specaug_class(**specaug_conf)
|
||
if normalize is not None:
|
||
normalize_class = tables.normalize_classes.get(normalize)
|
||
normalize = normalize_class(**normalize_conf)
|
||
|
||
# audio encoder
|
||
hub = encoder_conf.get("hub", None)
|
||
if hub == "funasr":
|
||
from funasr import AutoModel
|
||
|
||
init_param_path = encoder_conf.get(
|
||
"init_param_path",
|
||
"iic/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch",
|
||
)
|
||
model = AutoModel(model=init_param_path, model_revision="master")
|
||
# frontend = model.kwargs.get("frontend")
|
||
model.model.decoder = None
|
||
|
||
self.audio_encoder = model.model
|
||
# self.frontend = frontend
|
||
|
||
elif hub == "hf":
|
||
pass
|
||
else:
|
||
encoder_class = tables.encoder_classes.get(encoder)
|
||
encoder = encoder_class(input_size=input_size, **encoder_conf)
|
||
encoder_output_size = encoder.output_size()
|
||
|
||
# llm
|
||
hub = llm_conf.get("hub", "hf")
|
||
self.llm = None
|
||
if hub == "hf":
|
||
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
|
||
|
||
init_param_path = llm_conf.get("init_param_path", "vicuna-7b-v1.5")
|
||
model = AutoModelForCausalLM.from_pretrained(
|
||
init_param_path,
|
||
load_in_8bit=None,
|
||
device_map=None,
|
||
use_cache=None,
|
||
)
|
||
freeze = llm_conf.get("freeze", True)
|
||
if freeze:
|
||
for name, param in model.named_parameters():
|
||
param.requires_grad = False
|
||
model.eval()
|
||
self.llm = model
|
||
|
||
# adaptor
|
||
adaptor_class = tables.adaptor_classes.get(adaptor)
|
||
adaptor = adaptor_class(**adaptor_conf)
|
||
|
||
self.adaptor = adaptor
|
||
|
||
self.blank_id = blank_id
|
||
self.sos = sos if sos is not None else vocab_size - 1
|
||
self.eos = eos if eos is not None else vocab_size - 1
|
||
self.vocab_size = vocab_size
|
||
self.ignore_id = ignore_id
|
||
self.specaug = specaug
|
||
self.normalize = normalize
|
||
self.encoder = encoder
|
||
|
||
self.criterion_att = LabelSmoothingLoss(
|
||
size=vocab_size,
|
||
padding_idx=ignore_id,
|
||
smoothing=lsm_weight,
|
||
normalize_length=length_normalized_loss,
|
||
)
|
||
#
|
||
# if report_cer or report_wer:
|
||
# self.error_calculator = ErrorCalculator(
|
||
# token_list, sym_space, sym_blank, report_cer, report_wer
|
||
# )
|
||
#
|
||
self.error_calculator = None
|
||
|
||
self.length_normalized_loss = length_normalized_loss
|
||
self.beam_search = None
|
||
|
||
def forward(
|
||
self,
|
||
speech: torch.Tensor,
|
||
speech_lengths: torch.Tensor,
|
||
text: torch.Tensor,
|
||
text_lengths: torch.Tensor,
|
||
input_ids: torch.Tensor,
|
||
attention_mask: torch.Tensor,
|
||
labels_ids: torch.Tensor,
|
||
label_mask: torch.Tensor,
|
||
audio_mask: torch.Tensor,
|
||
**kwargs,
|
||
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
|
||
"""Encoder + Decoder + Calc loss
|
||
Args:
|
||
speech: (Batch, Length, ...)
|
||
speech_lengths: (Batch, )
|
||
text: (Batch, Length)
|
||
text_lengths: (Batch,)
|
||
"""
|
||
# import pdb;
|
||
# pdb.set_trace()
|
||
if len(text_lengths.size()) > 1:
|
||
text_lengths = text_lengths[:, 0]
|
||
if len(speech_lengths.size()) > 1:
|
||
speech_lengths = speech_lengths[:, 0]
|
||
|
||
batch_size = speech.shape[0]
|
||
|
||
# audio encoder
|
||
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths, audio_mask=audio_mask)
|
||
|
||
# adaptor
|
||
encoder_out = self.adaptor(encoder_out)
|
||
|
||
if input_ids is not None:
|
||
input_ids[input_ids == -1] = 0
|
||
input_ids[input_ids == -100] = 0
|
||
if hasattr(self.llm.model, "embed_tokens"):
|
||
inputs_embeds = self.llm.model.embed_tokens(input_ids)
|
||
elif hasattr(self.llm.model.model, "embed_tokens"):
|
||
inputs_embeds = self.llm.model.model.embed_tokens(input_ids)
|
||
else:
|
||
inputs_embeds = self.llm.model.model.model.embed_tokens(input_ids)
|
||
|
||
if audio_mask is not None:
|
||
batch_size, token_num, dims = inputs_embeds.shape
|
||
_, l, _ = encoder_out.shape
|
||
encoder_outs_pad = F.pad(encoder_out, (0, 0, token_num - l - 1, 1, 0, 0), value=0.0)
|
||
inputs_embeds = encoder_outs_pad * audio_mask[:, :, None] + inputs_embeds * (
|
||
1.0 - audio_mask[:, :, None]
|
||
)
|
||
inputs_embeds = F.pad(inputs_embeds[:, 1:, :], (0, 0, 0, 1, 0, 0), value=0.0)
|
||
|
||
model_outputs = self.llm(
|
||
inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=labels_ids
|
||
)
|
||
loss = model_outputs.loss
|
||
|
||
stats = {}
|
||
with torch.no_grad():
|
||
preds = torch.argmax(model_outputs.logits, -1)
|
||
acc_att = compute_accuracy(preds[:, :-1], labels_ids[:, 1:], ignore_label=-100)
|
||
stats["acc"] = acc_att
|
||
|
||
stats["loss"] = torch.clone(loss.detach())
|
||
|
||
# force_gatherable: to-device and to-tensor if scalar for DataParallel
|
||
if self.length_normalized_loss:
|
||
batch_size = int((text_lengths + 1).sum())
|
||
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
|
||
return loss, stats, weight
|
||
|
||
def encode(
|
||
self,
|
||
speech: torch.Tensor,
|
||
speech_lengths: torch.Tensor,
|
||
**kwargs,
|
||
):
|
||
|
||
audio_mask = kwargs.get("audio_mask", None)
|
||
audio_token_lengths = audio_mask.sum(-1) if audio_mask is not None else None
|
||
text_token_int = kwargs.get("text_token_int", None)
|
||
if audio_token_lengths is None:
|
||
audio_token_lengths = torch.tensor([len(text_token_int)], dtype=torch.int64)
|
||
|
||
batch = {"speech": speech, "speech_lengths": speech_lengths}
|
||
enc, enc_lens = self.audio_encoder.encode(**batch)
|
||
with autocast(False):
|
||
enc_mask = sequence_mask(enc_lens, enc.size(1), device=enc.device)[:, None, :]
|
||
pre_acoustic_embeds, pre_token_length, _, _ = self.audio_encoder.predictor(
|
||
enc,
|
||
mask=enc_mask,
|
||
target_label_length=audio_token_lengths,
|
||
)
|
||
|
||
return pre_acoustic_embeds, pre_token_length
|
||
|
||
def inference(
|
||
self,
|
||
data_in,
|
||
data_lengths=None,
|
||
key: list = None,
|
||
tokenizer=None,
|
||
frontend=None,
|
||
**kwargs,
|
||
):
|
||
|
||
prompt = kwargs.get("prompt", "Transcribe speech to text.")
|
||
|
||
if kwargs.get("batch_size", 1) > 1:
|
||
raise NotImplementedError("batch decoding is not implemented")
|
||
|
||
meta_data = {}
|
||
if (
|
||
isinstance(data_in, torch.Tensor) and kwargs.get("data_type", "sound") == "fbank"
|
||
): # fbank
|
||
speech, speech_lengths = data_in, data_lengths
|
||
if len(speech.shape) < 3:
|
||
speech = speech[None, :, :]
|
||
if speech_lengths is None:
|
||
speech_lengths = speech.shape[1]
|
||
else:
|
||
# extract fbank feats
|
||
time1 = time.perf_counter()
|
||
audio_sample_list = load_audio_text_image_video(
|
||
data_in,
|
||
fs=frontend.fs,
|
||
audio_fs=kwargs.get("fs", 16000),
|
||
data_type=kwargs.get("data_type", "sound"),
|
||
tokenizer=None,
|
||
)
|
||
if len(kwargs.get("data_type", [])) > 1:
|
||
audio_sample_list, text_token_int_list = audio_sample_list
|
||
text_token_int = text_token_int_list[0].replace(" ", "")
|
||
text_token_int = tokenizer.encode(text_token_int)
|
||
else:
|
||
text_token_int = None
|
||
time2 = time.perf_counter()
|
||
meta_data["load_data"] = f"{time2 - time1:0.3f}"
|
||
speech, speech_lengths = extract_fbank(
|
||
audio_sample_list, data_type=kwargs.get("data_type", "sound"), frontend=frontend
|
||
)
|
||
time3 = time.perf_counter()
|
||
meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
|
||
meta_data["batch_data_time"] = (
|
||
speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000
|
||
)
|
||
|
||
speech = speech.to(device=kwargs["device"])
|
||
speech_lengths = speech_lengths.to(device=kwargs["device"])
|
||
|
||
# Encoder
|
||
encoder_out, encoder_out_lens = self.encode(
|
||
speech, speech_lengths, text_token_int=text_token_int
|
||
)
|
||
|
||
# adaptor
|
||
encoder_out = self.adaptor(encoder_out)
|
||
|
||
prompt_pre = "USER: \nINSTRUCTION: {}\nINPUT: ".format(prompt)
|
||
prompt_ids = tokenizer.encode(prompt_pre)
|
||
prompt_length = len(prompt_ids)
|
||
prompt_ids = torch.tensor(prompt_ids, dtype=torch.int64).to(kwargs["device"])
|
||
|
||
if hasattr(self.llm.model, "embed_tokens"):
|
||
inputs_embeds = self.llm.model.embed_tokens(prompt_ids)
|
||
elif hasattr(self.llm.model.model, "embed_tokens"):
|
||
inputs_embeds = self.llm.model.model.embed_tokens(prompt_ids)
|
||
else:
|
||
inputs_embeds = self.llm.model.model.model.embed_tokens(prompt_ids)
|
||
|
||
inputs_embeds = torch.cat(
|
||
(inputs_embeds[None, :, :], encoder_out), dim=1
|
||
) # [prompt, audio]
|
||
attention_mask = torch.ones(inputs_embeds.size()[:-1], dtype=torch.long).to(
|
||
kwargs["device"]
|
||
)
|
||
|
||
# model_outputs = self.llm.generate(
|
||
# inputs_embeds=inputs_embeds,
|
||
# max_length=kwargs.get("max_length", 200),
|
||
# max_new_tokens=kwargs.get("max_new_tokens", 200),
|
||
# num_beams=kwargs.get("num_beams", 4),
|
||
# do_sample=kwargs.get("do_sample", False),
|
||
# min_length=kwargs.get("min_length", 1),
|
||
# top_p=kwargs.get("top_p", 1.0),
|
||
# repetition_penalty=kwargs.get("repetition_penalty", 1.0),
|
||
# length_penalty=kwargs.get("length_penalty", 1.0),
|
||
# temperature=kwargs.get("temperature", 1.0),
|
||
# attention_mask=attention_mask,
|
||
# bos_token_id=tokenizer.bos_token_id,
|
||
# eos_token_id=tokenizer.eos_token_id,
|
||
# pad_token_id=tokenizer.pad_token_id
|
||
# )
|
||
|
||
model_outputs = self.llm(
|
||
inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=None
|
||
)
|
||
preds = torch.argmax(model_outputs.logits, -1)
|
||
text = tokenizer.batch_decode(preds, add_special_tokens=False, skip_special_tokens=True)
|
||
|
||
text = text[0].split(": ")[-1]
|
||
text = text.strip()
|
||
|
||
# preds = torch.argmax(model_outputs.logits, -1)
|
||
|
||
ibest_writer = None
|
||
if kwargs.get("output_dir") is not None:
|
||
if not hasattr(self, "writer"):
|
||
self.writer = DatadirWriter(kwargs.get("output_dir"))
|
||
ibest_writer = self.writer[f"{0 + 1}best_recog"]
|
||
|
||
results = []
|
||
result_i = {"key": key[0], "text": text}
|
||
results.append(result_i)
|
||
|
||
if ibest_writer is not None:
|
||
ibest_writer["text"][key[0]] = text
|
||
|
||
return results, meta_data
|
||
|
||
|
||
@tables.register("model_classes", "LLMASRNARPrompt")
|
||
class LLMASRNARPrompt(nn.Module):
|
||
""" """
|
||
|
||
def __init__(
|
||
self,
|
||
specaug: str = None,
|
||
specaug_conf: dict = None,
|
||
normalize: str = None,
|
||
normalize_conf: dict = None,
|
||
encoder: str = None,
|
||
encoder_conf: dict = None,
|
||
decoder: str = None,
|
||
decoder_conf: dict = None,
|
||
ctc: str = None,
|
||
ctc_conf: dict = None,
|
||
ctc_weight: float = 0.0,
|
||
llm: str = None,
|
||
llm_conf: dict = None,
|
||
adaptor: str = None,
|
||
adaptor_conf: dict = None,
|
||
input_size: int = 80,
|
||
vocab_size: int = -1,
|
||
ignore_id: int = -1,
|
||
blank_id: int = 0,
|
||
sos: int = 1,
|
||
eos: int = 2,
|
||
lsm_weight: float = 0.0,
|
||
length_normalized_loss: bool = False,
|
||
predictor_weight: int = 1.0,
|
||
report_cer: bool = True,
|
||
report_wer: bool = True,
|
||
sym_space: str = "<space>",
|
||
sym_blank: str = "<blank>",
|
||
# extract_feats_in_collect_stats: bool = True,
|
||
share_embedding: bool = False,
|
||
# preencoder: Optional[AbsPreEncoder] = None,
|
||
# postencoder: Optional[AbsPostEncoder] = None,
|
||
**kwargs,
|
||
):
|
||
|
||
super().__init__()
|
||
|
||
if specaug is not None:
|
||
specaug_class = tables.specaug_classes.get(specaug)
|
||
specaug = specaug_class(**specaug_conf)
|
||
if normalize is not None:
|
||
normalize_class = tables.normalize_classes.get(normalize)
|
||
normalize = normalize_class(**normalize_conf)
|
||
|
||
# audio encoder
|
||
hub = encoder_conf.get("hub", None)
|
||
if hub == "funasr":
|
||
from funasr import AutoModel
|
||
|
||
init_param_path = encoder_conf.get(
|
||
"init_param_path",
|
||
"iic/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch",
|
||
)
|
||
model = AutoModel(model=init_param_path, model_revision="master")
|
||
# frontend = model.kwargs.get("frontend")
|
||
model.model.decoder = None
|
||
|
||
self.audio_encoder = model.model
|
||
# self.frontend = frontend
|
||
self.predictor_weight = predictor_weight
|
||
|
||
elif hub == "hf":
|
||
pass
|
||
else:
|
||
encoder_class = tables.encoder_classes.get(encoder)
|
||
encoder = encoder_class(input_size=input_size, **encoder_conf)
|
||
encoder_output_size = encoder.output_size()
|
||
|
||
# llm
|
||
hub = llm_conf.get("hub", "hf")
|
||
self.llm = None
|
||
if hub == "hf":
|
||
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
|
||
|
||
init_param_path = llm_conf.get("init_param_path", "vicuna-7b-v1.5")
|
||
model = AutoModelForCausalLM.from_pretrained(
|
||
init_param_path,
|
||
load_in_8bit=None,
|
||
device_map=None,
|
||
use_cache=None,
|
||
)
|
||
freeze = llm_conf.get("freeze", True)
|
||
if freeze:
|
||
for name, param in model.named_parameters():
|
||
param.requires_grad = False
|
||
model.eval()
|
||
self.llm = model
|
||
|
||
# adaptor
|
||
adaptor_class = tables.adaptor_classes.get(adaptor)
|
||
adaptor = adaptor_class(**adaptor_conf)
|
||
|
||
self.adaptor = adaptor
|
||
|
||
self.blank_id = blank_id
|
||
self.sos = sos if sos is not None else vocab_size - 1
|
||
self.eos = eos if eos is not None else vocab_size - 1
|
||
self.vocab_size = vocab_size
|
||
self.ignore_id = ignore_id
|
||
self.specaug = specaug
|
||
self.normalize = normalize
|
||
self.encoder = encoder
|
||
|
||
self.criterion_att = LabelSmoothingLoss(
|
||
size=vocab_size,
|
||
padding_idx=ignore_id,
|
||
smoothing=lsm_weight,
|
||
normalize_length=length_normalized_loss,
|
||
)
|
||
self.criterion_pre = mae_loss(normalize_length=length_normalized_loss)
|
||
#
|
||
# if report_cer or report_wer:
|
||
# self.error_calculator = ErrorCalculator(
|
||
# token_list, sym_space, sym_blank, report_cer, report_wer
|
||
# )
|
||
#
|
||
self.error_calculator = None
|
||
|
||
self.length_normalized_loss = length_normalized_loss
|
||
self.beam_search = None
|
||
if ctc_weight > 0.0:
|
||
if ctc_conf is None:
|
||
ctc_conf = {}
|
||
|
||
ctc = CTC(odim=vocab_size, encoder_output_size=adaptor_conf["encoder_dim"], **ctc_conf)
|
||
self.ctc_weight = ctc_weight
|
||
self.ctc = ctc
|
||
|
||
def forward(
|
||
self,
|
||
speech: torch.Tensor,
|
||
speech_lengths: torch.Tensor,
|
||
text: torch.Tensor,
|
||
text_lengths: torch.Tensor,
|
||
input_ids: torch.Tensor,
|
||
attention_mask: torch.Tensor,
|
||
labels_ids: torch.Tensor,
|
||
label_mask: torch.Tensor,
|
||
audio_mask: torch.Tensor,
|
||
**kwargs,
|
||
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
|
||
"""Encoder + Decoder + Calc loss
|
||
Args:
|
||
speech: (Batch, Length, ...)
|
||
speech_lengths: (Batch, )
|
||
text: (Batch, Length)
|
||
text_lengths: (Batch,)
|
||
"""
|
||
# import pdb;
|
||
# pdb.set_trace()
|
||
if len(text_lengths.size()) > 1:
|
||
text_lengths = text_lengths[:, 0]
|
||
if len(speech_lengths.size()) > 1:
|
||
speech_lengths = speech_lengths[:, 0]
|
||
|
||
batch_size = speech.shape[0]
|
||
|
||
stats = {}
|
||
# audio encoder
|
||
outs = self.encode(speech, speech_lengths, audio_mask=audio_mask)
|
||
enc, enc_lens = outs[0], outs[1]
|
||
encoder_out, encoder_out_lens, loss_pre = outs[2], outs[3], outs[4]
|
||
|
||
# decoder: CTC branch
|
||
|
||
if self.ctc_weight != 0.0:
|
||
loss_ctc, cer_ctc = self._calc_ctc_loss(enc, enc_lens, text, text_lengths)
|
||
|
||
# Collect CTC branch stats
|
||
stats["loss_ctc"] = torch.clone(loss_ctc.detach()) if loss_ctc is not None else None
|
||
|
||
# adaptor
|
||
encoder_out = self.adaptor(encoder_out)
|
||
|
||
if input_ids is not None:
|
||
input_ids[input_ids == -1] = 0
|
||
input_ids[input_ids == -100] = 0
|
||
if hasattr(self.llm.model, "embed_tokens"):
|
||
inputs_embeds = self.llm.model.embed_tokens(input_ids)
|
||
elif hasattr(self.llm.model.model, "embed_tokens"):
|
||
inputs_embeds = self.llm.model.model.embed_tokens(input_ids)
|
||
else:
|
||
inputs_embeds = self.llm.model.model.model.embed_tokens(input_ids)
|
||
|
||
if audio_mask is not None:
|
||
# inputs_embeds: [bos, prompt, input, pad, target]
|
||
prompt_bos_length = kwargs.get("prompt_bos_length", None)
|
||
assert prompt_bos_length is not None
|
||
prompt_bos_length = prompt_bos_length[0].item()
|
||
batch_size, token_num, dims = inputs_embeds.shape
|
||
_, l, _ = encoder_out.shape
|
||
encoder_outs_pad = F.pad(
|
||
encoder_out,
|
||
(0, 0, prompt_bos_length, token_num - prompt_bos_length - l, 0, 0),
|
||
value=0.0,
|
||
)
|
||
inputs_embeds = encoder_outs_pad * audio_mask[:, :, None] + inputs_embeds * (
|
||
1.0 - audio_mask[:, :, None]
|
||
)
|
||
inputs_embeds = F.pad(
|
||
inputs_embeds[:, 1:, :], (0, 0, 0, 1, 0, 0), value=0.0
|
||
) # [prompt, input, pad, target, 0.0]
|
||
|
||
# labels_ids: [bos, prompt, input, target, eos] -> [-1, -1, input, target, eos]
|
||
# loss:
|
||
# inputs_embeds[:-1] -> [prompt, input, pad, target]
|
||
# labels_ids[1:] -> [prompt, input, target, eos] -> [-1, input, target, eos];
|
||
model_outputs = self.llm(
|
||
inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=labels_ids
|
||
)
|
||
loss_llm = model_outputs.loss
|
||
stats["loss_llm"] = torch.clone(loss_llm.detach())
|
||
if self.ctc_weight > 0.0:
|
||
loss_llm = self.ctc_weight * loss_ctc + loss_llm
|
||
loss = loss_llm + loss_pre * self.predictor_weight
|
||
|
||
with torch.no_grad():
|
||
preds = torch.argmax(model_outputs.logits, -1)
|
||
acc_att = compute_accuracy(preds[:, :-1], labels_ids[:, 1:], ignore_label=-100)
|
||
stats["acc"] = acc_att
|
||
|
||
stats["loss_pre"] = torch.clone(loss_pre.detach())
|
||
stats["loss"] = torch.clone(loss.detach())
|
||
stats["batch_size"] = batch_size
|
||
|
||
# force_gatherable: to-device and to-tensor if scalar for DataParallel
|
||
if self.length_normalized_loss:
|
||
batch_size = int((text_lengths + 1).sum())
|
||
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
|
||
return loss, stats, weight
|
||
|
||
def encode(
|
||
self,
|
||
speech: torch.Tensor,
|
||
speech_lengths: torch.Tensor,
|
||
**kwargs,
|
||
):
|
||
|
||
audio_mask = kwargs.get("audio_mask", None)
|
||
audio_token_lengths = audio_mask.sum(-1) if audio_mask is not None else None
|
||
text_token_int = kwargs.get("text_token_int", None)
|
||
if audio_token_lengths is None and text_token_int is not None:
|
||
audio_token_lengths = torch.tensor([len(text_token_int)], dtype=torch.int64)
|
||
|
||
batch = {"speech": speech, "speech_lengths": speech_lengths}
|
||
enc, enc_lens = self.audio_encoder.encode(**batch)
|
||
with autocast(False):
|
||
enc_mask = sequence_mask(enc_lens, enc.size(1), device=enc.device)[:, None, :]
|
||
pre_acoustic_embeds, pre_token_length, _, _ = self.audio_encoder.predictor(
|
||
enc,
|
||
mask=enc_mask,
|
||
target_label_length=audio_token_lengths,
|
||
)
|
||
loss_pre = 0.0
|
||
if audio_token_lengths is not None:
|
||
loss_pre = self.criterion_pre(
|
||
audio_token_lengths.type_as(pre_token_length), pre_token_length
|
||
)
|
||
|
||
return enc, enc_lens, pre_acoustic_embeds, pre_token_length, loss_pre
|
||
|
||
def _calc_ctc_loss(
|
||
self,
|
||
encoder_out: torch.Tensor,
|
||
encoder_out_lens: torch.Tensor,
|
||
ys_pad: torch.Tensor,
|
||
ys_pad_lens: torch.Tensor,
|
||
):
|
||
# Calc CTC loss
|
||
loss_ctc = self.ctc(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens)
|
||
|
||
# Calc CER using CTC
|
||
cer_ctc = None
|
||
if not self.training and self.error_calculator is not None:
|
||
ys_hat = self.ctc.argmax(encoder_out).data
|
||
cer_ctc = self.error_calculator(ys_hat.cpu(), ys_pad.cpu(), is_ctc=True)
|
||
return loss_ctc, cer_ctc
|
||
|
||
def inference(
|
||
self,
|
||
data_in,
|
||
data_lengths=None,
|
||
key: list = None,
|
||
tokenizer=None,
|
||
frontend=None,
|
||
**kwargs,
|
||
):
|
||
|
||
prompt = kwargs.get("prompt", "Transcribe speech to text.")
|
||
|
||
if kwargs.get("batch_size", 1) > 1:
|
||
raise NotImplementedError("batch decoding is not implemented")
|
||
|
||
meta_data = {}
|
||
if (
|
||
isinstance(data_in, torch.Tensor) and kwargs.get("data_type", "sound") == "fbank"
|
||
): # fbank
|
||
speech, speech_lengths = data_in, data_lengths
|
||
if len(speech.shape) < 3:
|
||
speech = speech[None, :, :]
|
||
if speech_lengths is None:
|
||
speech_lengths = speech.shape[1]
|
||
else:
|
||
# extract fbank feats
|
||
time1 = time.perf_counter()
|
||
audio_sample_list = load_audio_text_image_video(
|
||
data_in,
|
||
fs=frontend.fs,
|
||
audio_fs=kwargs.get("fs", 16000),
|
||
data_type=kwargs.get("data_type", "sound"),
|
||
tokenizer=None,
|
||
)
|
||
if len(kwargs.get("data_type", [])) > 1:
|
||
audio_sample_list, text_token_int_list = audio_sample_list
|
||
text_token_int = text_token_int_list[0]
|
||
text_token_int = tokenizer.encode(text_token_int)
|
||
if text_token_int[0] == tokenizer.bos_token_id:
|
||
text_token_int = text_token_int[1:]
|
||
else:
|
||
text_token_int = None
|
||
time2 = time.perf_counter()
|
||
meta_data["load_data"] = f"{time2 - time1:0.3f}"
|
||
speech, speech_lengths = extract_fbank(
|
||
audio_sample_list, data_type=kwargs.get("data_type", "sound"), frontend=frontend
|
||
)
|
||
time3 = time.perf_counter()
|
||
meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
|
||
meta_data["batch_data_time"] = (
|
||
speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000
|
||
)
|
||
|
||
speech = speech.to(device=kwargs["device"])
|
||
speech_lengths = speech_lengths.to(device=kwargs["device"])
|
||
|
||
# Encoder
|
||
res = self.encode(speech, speech_lengths, text_token_int=text_token_int)
|
||
encoder_out = res[0]
|
||
|
||
# adaptor
|
||
encoder_out = self.adaptor(encoder_out)
|
||
|
||
prompt_pre = "USER: \nINSTRUCTION: {}\nINPUT: ".format(prompt)
|
||
prompt_ids = tokenizer.encode(prompt_pre)
|
||
if prompt_ids[0] == tokenizer.bos_token_id:
|
||
prompt_ids = prompt_ids[1:]
|
||
# prompt_ids = prompt_ids + [tokenizer.pad_token_id]
|
||
prompt_length = len(prompt_ids)
|
||
prompt_ids = torch.tensor(prompt_ids, dtype=torch.int64).to(kwargs["device"])
|
||
pad = torch.tensor([tokenizer.pad_token_id], dtype=torch.int64).to(kwargs["device"])
|
||
|
||
if hasattr(self.llm.model, "embed_tokens"):
|
||
inputs_embeds = self.llm.model.embed_tokens(prompt_ids)
|
||
pad = self.llm.model.embed_tokens(pad)
|
||
elif hasattr(self.llm.model.model, "embed_tokens"):
|
||
inputs_embeds = self.llm.model.model.embed_tokens(prompt_ids)
|
||
else:
|
||
inputs_embeds = self.llm.model.model.model.embed_tokens(prompt_ids)
|
||
|
||
# inputs_embeds = torch.cat((inputs_embeds[None, :, :], encoder_out, pad[None, :, :]), dim=1) # [prompt, audio, pad]
|
||
inputs_embeds = torch.cat(
|
||
(inputs_embeds[None, :, :], encoder_out), dim=1
|
||
) # [prompt, audio]
|
||
attention_mask = torch.ones(inputs_embeds.size()[:-1], dtype=torch.long).to(
|
||
kwargs["device"]
|
||
)
|
||
|
||
# model_outputs = self.llm.generate(
|
||
# inputs_embeds=inputs_embeds,
|
||
# max_length=kwargs.get("max_length", 200),
|
||
# max_new_tokens=kwargs.get("max_new_tokens", 200),
|
||
# num_beams=kwargs.get("num_beams", 4),
|
||
# do_sample=kwargs.get("do_sample", False),
|
||
# min_length=kwargs.get("min_length", 1),
|
||
# top_p=kwargs.get("top_p", 1.0),
|
||
# repetition_penalty=kwargs.get("repetition_penalty", 1.0),
|
||
# length_penalty=kwargs.get("length_penalty", 1.0),
|
||
# temperature=kwargs.get("temperature", 1.0),
|
||
# attention_mask=attention_mask,
|
||
# bos_token_id=tokenizer.bos_token_id,
|
||
# eos_token_id=tokenizer.eos_token_id,
|
||
# pad_token_id=tokenizer.pad_token_id
|
||
# )
|
||
|
||
model_outputs = self.llm(
|
||
inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=None
|
||
)
|
||
preds = torch.argmax(model_outputs.logits, -1)
|
||
text = tokenizer.batch_decode(preds, add_special_tokens=False, skip_special_tokens=True)
|
||
|
||
text = text[0].split(":")[-1]
|
||
text = text.strip()
|
||
if text.startswith("Please\n "):
|
||
text = text.replace("Please\n ", "")
|
||
text = text.strip()
|
||
|
||
# preds = torch.argmax(model_outputs.logits, -1)
|
||
|
||
ibest_writer = None
|
||
if kwargs.get("output_dir") is not None:
|
||
if not hasattr(self, "writer"):
|
||
self.writer = DatadirWriter(kwargs.get("output_dir"))
|
||
ibest_writer = self.writer[f"{0 + 1}best_recog"]
|
||
|
||
results = []
|
||
result_i = {"key": key[0], "text": text}
|
||
results.append(result_i)
|
||
|
||
if ibest_writer is not None:
|
||
ibest_writer["text"][key[0]] = text
|
||
|
||
return results, meta_data
|