65 lines
2.8 KiB
Python
65 lines
2.8 KiB
Python
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torch import nn
|
|
|
|
|
|
class EncoderDecoderAttractor(nn.Module):
|
|
|
|
def __init__(self, n_units, encoder_dropout=0.1, decoder_dropout=0.1):
|
|
super(EncoderDecoderAttractor, self).__init__()
|
|
self.enc0_dropout = nn.Dropout(encoder_dropout)
|
|
self.encoder = nn.LSTM(n_units, n_units, 1, batch_first=True, dropout=encoder_dropout)
|
|
self.dec0_dropout = nn.Dropout(decoder_dropout)
|
|
self.decoder = nn.LSTM(n_units, n_units, 1, batch_first=True, dropout=decoder_dropout)
|
|
self.counter = nn.Linear(n_units, 1)
|
|
self.n_units = n_units
|
|
|
|
def forward_core(self, xs, zeros):
|
|
ilens = torch.from_numpy(np.array([x.shape[0] for x in xs])).to(torch.int64)
|
|
xs = [self.enc0_dropout(x) for x in xs]
|
|
xs = nn.utils.rnn.pad_sequence(xs, batch_first=True, padding_value=-1)
|
|
xs = nn.utils.rnn.pack_padded_sequence(xs, ilens, batch_first=True, enforce_sorted=False)
|
|
_, (hx, cx) = self.encoder(xs)
|
|
zlens = torch.from_numpy(np.array([z.shape[0] for z in zeros])).to(torch.int64)
|
|
max_zlen = torch.max(zlens).to(torch.int).item()
|
|
zeros = [self.enc0_dropout(z) for z in zeros]
|
|
zeros = nn.utils.rnn.pad_sequence(zeros, batch_first=True, padding_value=-1)
|
|
zeros = nn.utils.rnn.pack_padded_sequence(
|
|
zeros, zlens, batch_first=True, enforce_sorted=False
|
|
)
|
|
attractors, (_, _) = self.decoder(zeros, (hx, cx))
|
|
attractors = nn.utils.rnn.pad_packed_sequence(
|
|
attractors, batch_first=True, padding_value=-1, total_length=max_zlen
|
|
)[0]
|
|
attractors = [att[: zlens[i].to(torch.int).item()] for i, att in enumerate(attractors)]
|
|
return attractors
|
|
|
|
def forward(self, xs, n_speakers):
|
|
zeros = [
|
|
torch.zeros(n_spk + 1, self.n_units).to(torch.float32).to(xs[0].device)
|
|
for n_spk in n_speakers
|
|
]
|
|
attractors = self.forward_core(xs, zeros)
|
|
labels = torch.cat(
|
|
[torch.from_numpy(np.array([[1] * n_spk + [0]], np.float32)) for n_spk in n_speakers],
|
|
dim=1,
|
|
)
|
|
labels = labels.to(xs[0].device)
|
|
logit = torch.cat(
|
|
[self.counter(att).view(-1, n_spk + 1) for att, n_spk in zip(attractors, n_speakers)],
|
|
dim=1,
|
|
)
|
|
loss = F.binary_cross_entropy(torch.sigmoid(logit), labels)
|
|
|
|
attractors = [att[slice(0, att.shape[0] - 1)] for att in attractors]
|
|
return loss, attractors
|
|
|
|
def estimate(self, xs, max_n_speakers=15):
|
|
zeros = [
|
|
torch.zeros(max_n_speakers, self.n_units).to(torch.float32).to(xs[0].device) for _ in xs
|
|
]
|
|
attractors = self.forward_core(xs, zeros)
|
|
probs = [torch.sigmoid(torch.flatten(self.counter(att))) for att in attractors]
|
|
return attractors, probs
|