265 lines
9.6 KiB
Python
265 lines
9.6 KiB
Python
from contextlib import contextmanager
|
|
from distutils.version import LooseVersion
|
|
from typing import Dict, List, Tuple, Optional
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from funasr.frontends.wav_frontend import WavFrontendMel23
|
|
from funasr.models.eend.encoder import EENDOLATransformerEncoder
|
|
from funasr.models.eend.encoder_decoder_attractor import EncoderDecoderAttractor
|
|
from funasr.models.eend.utils.losses import (
|
|
standard_loss,
|
|
cal_power_loss,
|
|
fast_batch_pit_n_speaker_loss,
|
|
)
|
|
from funasr.models.eend.utils.power import create_powerlabel
|
|
from funasr.models.eend.utils.power import generate_mapping_dict
|
|
from funasr.train_utils.device_funcs import force_gatherable
|
|
|
|
if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
|
|
pass
|
|
else:
|
|
# Nothing to do if torch<1.6.0
|
|
@contextmanager
|
|
def autocast(enabled=True):
|
|
yield
|
|
|
|
|
|
def pad_attractor(att, max_n_speakers):
|
|
C, D = att.shape
|
|
if C < max_n_speakers:
|
|
att = torch.cat(
|
|
[att, torch.zeros(max_n_speakers - C, D).to(torch.float32).to(att.device)], dim=0
|
|
)
|
|
return att
|
|
|
|
|
|
def pad_labels(ts, out_size):
|
|
for i, t in enumerate(ts):
|
|
if t.shape[1] < out_size:
|
|
ts[i] = F.pad(t, (0, out_size - t.shape[1], 0, 0), mode="constant", value=0.0)
|
|
return ts
|
|
|
|
|
|
def pad_results(ys, out_size):
|
|
ys_padded = []
|
|
for i, y in enumerate(ys):
|
|
if y.shape[1] < out_size:
|
|
ys_padded.append(
|
|
torch.cat(
|
|
[
|
|
y,
|
|
torch.zeros(y.shape[0], out_size - y.shape[1])
|
|
.to(torch.float32)
|
|
.to(y.device),
|
|
],
|
|
dim=1,
|
|
)
|
|
)
|
|
else:
|
|
ys_padded.append(y)
|
|
return ys_padded
|
|
|
|
|
|
class DiarEENDOLAModel(nn.Module):
|
|
"""EEND-OLA diarization model"""
|
|
|
|
def __init__(
|
|
self,
|
|
frontend: Optional[WavFrontendMel23],
|
|
encoder: EENDOLATransformerEncoder,
|
|
encoder_decoder_attractor: EncoderDecoderAttractor,
|
|
n_units: int = 256,
|
|
max_n_speaker: int = 8,
|
|
attractor_loss_weight: float = 1.0,
|
|
mapping_dict=None,
|
|
**kwargs,
|
|
):
|
|
super().__init__()
|
|
self.frontend = frontend
|
|
self.enc = encoder
|
|
self.encoder_decoder_attractor = encoder_decoder_attractor
|
|
self.attractor_loss_weight = attractor_loss_weight
|
|
self.max_n_speaker = max_n_speaker
|
|
if mapping_dict is None:
|
|
mapping_dict = generate_mapping_dict(max_speaker_num=self.max_n_speaker)
|
|
self.mapping_dict = mapping_dict
|
|
# PostNet
|
|
self.postnet = nn.LSTM(self.max_n_speaker, n_units, 1, batch_first=True)
|
|
self.output_layer = nn.Linear(n_units, mapping_dict["oov"] + 1)
|
|
|
|
def forward_encoder(self, xs, ilens):
|
|
xs = nn.utils.rnn.pad_sequence(xs, batch_first=True, padding_value=-1)
|
|
pad_shape = xs.shape
|
|
xs_mask = [torch.ones(ilen).to(xs.device) for ilen in ilens]
|
|
xs_mask = torch.nn.utils.rnn.pad_sequence(
|
|
xs_mask, batch_first=True, padding_value=0
|
|
).unsqueeze(-2)
|
|
emb = self.enc(xs, xs_mask)
|
|
emb = torch.split(emb.view(pad_shape[0], pad_shape[1], -1), 1, dim=0)
|
|
emb = [e[0][:ilen] for e, ilen in zip(emb, ilens)]
|
|
return emb
|
|
|
|
def forward_post_net(self, logits, ilens):
|
|
maxlen = torch.max(ilens).to(torch.int).item()
|
|
logits = nn.utils.rnn.pad_sequence(logits, batch_first=True, padding_value=-1)
|
|
logits = nn.utils.rnn.pack_padded_sequence(
|
|
logits, ilens.cpu().to(torch.int64), batch_first=True, enforce_sorted=False
|
|
)
|
|
outputs, (_, _) = self.postnet(logits)
|
|
outputs = nn.utils.rnn.pad_packed_sequence(
|
|
outputs, batch_first=True, padding_value=-1, total_length=maxlen
|
|
)[0]
|
|
outputs = [output[: ilens[i].to(torch.int).item()] for i, output in enumerate(outputs)]
|
|
outputs = [self.output_layer(output) for output in outputs]
|
|
return outputs
|
|
|
|
def forward(
|
|
self,
|
|
speech: List[torch.Tensor],
|
|
speaker_labels: List[torch.Tensor],
|
|
orders: torch.Tensor,
|
|
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
|
|
|
|
# Check that batch_size is unified
|
|
assert len(speech) == len(speaker_labels), (len(speech), len(speaker_labels))
|
|
speech_lengths = torch.tensor([len(sph) for sph in speech]).to(torch.int64)
|
|
speaker_labels_lengths = torch.tensor([spk.shape[-1] for spk in speaker_labels]).to(
|
|
torch.int64
|
|
)
|
|
batch_size = len(speech)
|
|
|
|
# Encoder
|
|
encoder_out = self.forward_encoder(speech, speech_lengths)
|
|
|
|
# Encoder-decoder attractor
|
|
attractor_loss, attractors = self.encoder_decoder_attractor(
|
|
[e[order] for e, order in zip(encoder_out, orders)], speaker_labels_lengths
|
|
)
|
|
speaker_logits = [
|
|
torch.matmul(e, att.permute(1, 0)) for e, att in zip(encoder_out, attractors)
|
|
]
|
|
|
|
# pit loss
|
|
pit_speaker_labels = fast_batch_pit_n_speaker_loss(speaker_logits, speaker_labels)
|
|
pit_loss = standard_loss(speaker_logits, pit_speaker_labels)
|
|
|
|
# pse loss
|
|
with torch.no_grad():
|
|
power_ts = [
|
|
create_powerlabel(label.cpu().numpy(), self.mapping_dict, self.max_n_speaker).to(
|
|
encoder_out[0].device, non_blocking=True
|
|
)
|
|
for label in pit_speaker_labels
|
|
]
|
|
pad_attractors = [pad_attractor(att, self.max_n_speaker) for att in attractors]
|
|
pse_speaker_logits = [
|
|
torch.matmul(e, pad_att.permute(1, 0))
|
|
for e, pad_att in zip(encoder_out, pad_attractors)
|
|
]
|
|
pse_speaker_logits = self.forward_post_net(pse_speaker_logits, speech_lengths)
|
|
pse_loss = cal_power_loss(pse_speaker_logits, power_ts)
|
|
|
|
loss = pse_loss + pit_loss + self.attractor_loss_weight * attractor_loss
|
|
|
|
stats = dict()
|
|
stats["pse_loss"] = pse_loss.detach()
|
|
stats["pit_loss"] = pit_loss.detach()
|
|
stats["attractor_loss"] = attractor_loss.detach()
|
|
stats["batch_size"] = batch_size
|
|
|
|
# Collect total loss stats
|
|
stats["loss"] = torch.clone(loss.detach())
|
|
|
|
# force_gatherable: to-device and to-tensor if scalar for DataParallel
|
|
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
|
|
return loss, stats, weight
|
|
|
|
def estimate_sequential(
|
|
self,
|
|
speech: torch.Tensor,
|
|
n_speakers: int = None,
|
|
shuffle: bool = True,
|
|
threshold: float = 0.5,
|
|
**kwargs,
|
|
):
|
|
speech_lengths = torch.tensor([len(sph) for sph in speech]).to(torch.int64)
|
|
emb = self.forward_encoder(speech, speech_lengths)
|
|
if shuffle:
|
|
orders = [np.arange(e.shape[0]) for e in emb]
|
|
for order in orders:
|
|
np.random.shuffle(order)
|
|
attractors, probs = self.encoder_decoder_attractor.estimate(
|
|
[
|
|
e[torch.from_numpy(order).to(torch.long).to(speech[0].device)]
|
|
for e, order in zip(emb, orders)
|
|
]
|
|
)
|
|
else:
|
|
attractors, probs = self.encoder_decoder_attractor.estimate(emb)
|
|
attractors_active = []
|
|
for p, att, e in zip(probs, attractors, emb):
|
|
if n_speakers and n_speakers >= 0:
|
|
att = att[:n_speakers,]
|
|
attractors_active.append(att)
|
|
elif threshold is not None:
|
|
silence = torch.nonzero(p < threshold)[0]
|
|
n_spk = silence[0] if silence.size else None
|
|
att = att[:n_spk,]
|
|
attractors_active.append(att)
|
|
else:
|
|
NotImplementedError("n_speakers or threshold has to be given.")
|
|
raw_n_speakers = [att.shape[0] for att in attractors_active]
|
|
attractors = [
|
|
(
|
|
pad_attractor(att, self.max_n_speaker)
|
|
if att.shape[0] <= self.max_n_speaker
|
|
else att[: self.max_n_speaker]
|
|
)
|
|
for att in attractors_active
|
|
]
|
|
ys = [torch.matmul(e, att.permute(1, 0)) for e, att in zip(emb, attractors)]
|
|
logits = self.forward_post_net(ys, speech_lengths)
|
|
ys = [
|
|
self.recover_y_from_powerlabel(logit, raw_n_speaker)
|
|
for logit, raw_n_speaker in zip(logits, raw_n_speakers)
|
|
]
|
|
|
|
return ys, emb, attractors, raw_n_speakers
|
|
|
|
def recover_y_from_powerlabel(self, logit, n_speaker):
|
|
pred = torch.argmax(torch.softmax(logit, dim=-1), dim=-1)
|
|
oov_index = torch.where(pred == self.mapping_dict["oov"])[0]
|
|
for i in oov_index:
|
|
if i > 0:
|
|
pred[i] = pred[i - 1]
|
|
else:
|
|
pred[i] = 0
|
|
pred = [self.inv_mapping_func(i) for i in pred]
|
|
decisions = [bin(num)[2:].zfill(self.max_n_speaker)[::-1] for num in pred]
|
|
decisions = (
|
|
torch.from_numpy(
|
|
np.stack([np.array([int(i) for i in dec]) for dec in decisions], axis=0)
|
|
)
|
|
.to(logit.device)
|
|
.to(torch.float32)
|
|
)
|
|
decisions = decisions[:, :n_speaker]
|
|
return decisions
|
|
|
|
def inv_mapping_func(self, label):
|
|
|
|
if not isinstance(label, int):
|
|
label = int(label)
|
|
if label in self.mapping_dict["label2dec"].keys():
|
|
num = self.mapping_dict["label2dec"][label]
|
|
else:
|
|
num = -1
|
|
return num
|
|
|
|
def collect_feats(self, **batch: torch.Tensor) -> Dict[str, torch.Tensor]:
|
|
pass
|