124 lines
4.2 KiB
Python
124 lines
4.2 KiB
Python
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
|
|
# Copyright 2019 Shigeki Karita
|
|
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
|
|
|
"""Label smoothing module."""
|
|
|
|
import torch
|
|
from torch import nn
|
|
from funasr.models.transformer.utils.nets_utils import make_pad_mask
|
|
|
|
|
|
class LabelSmoothingLoss(nn.Module):
|
|
"""Label-smoothing loss.
|
|
|
|
:param int size: the number of class
|
|
:param int padding_idx: ignored class id
|
|
:param float smoothing: smoothing rate (0.0 means the conventional CE)
|
|
:param bool normalize_length: normalize loss by sequence length if True
|
|
:param torch.nn.Module criterion: loss function to be smoothed
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
size,
|
|
padding_idx,
|
|
smoothing,
|
|
normalize_length=False,
|
|
criterion=nn.KLDivLoss(reduction="none"),
|
|
):
|
|
"""Construct an LabelSmoothingLoss object."""
|
|
super(LabelSmoothingLoss, self).__init__()
|
|
self.criterion = criterion
|
|
self.padding_idx = padding_idx
|
|
self.confidence = 1.0 - smoothing
|
|
self.smoothing = smoothing
|
|
self.size = size
|
|
self.true_dist = None
|
|
self.normalize_length = normalize_length
|
|
|
|
def forward(self, x, target):
|
|
"""Compute loss between x and target.
|
|
|
|
:param torch.Tensor x: prediction (batch, seqlen, class)
|
|
:param torch.Tensor target:
|
|
target signal masked with self.padding_id (batch, seqlen)
|
|
:return: scalar float value
|
|
:rtype torch.Tensor
|
|
"""
|
|
assert x.size(2) == self.size
|
|
batch_size = x.size(0)
|
|
x = x.contiguous().view(-1, self.size)
|
|
target = target.contiguous().view(-1)
|
|
with torch.no_grad():
|
|
true_dist = x.clone()
|
|
true_dist.fill_(self.smoothing / (self.size - 1))
|
|
ignore = target == self.padding_idx # (B,)
|
|
total = len(target) - ignore.sum().item()
|
|
target = target.masked_fill(ignore, 0) # avoid -1 index
|
|
true_dist.scatter_(1, target.unsqueeze(1), self.confidence)
|
|
kl = self.criterion(torch.log_softmax(x, dim=1), true_dist)
|
|
denom = total if self.normalize_length else batch_size
|
|
return kl.masked_fill(ignore.unsqueeze(1), 0).sum() / denom
|
|
|
|
|
|
class SequenceBinaryCrossEntropy(nn.Module):
|
|
def __init__(self, normalize_length=False, criterion=nn.BCEWithLogitsLoss(reduction="none")):
|
|
super().__init__()
|
|
self.normalize_length = normalize_length
|
|
self.criterion = criterion
|
|
|
|
def forward(self, pred, label, lengths):
|
|
pad_mask = make_pad_mask(lengths, maxlen=pred.shape[1]).to(pred.device)
|
|
loss = self.criterion(pred, label)
|
|
denom = (~pad_mask).sum() if self.normalize_length else pred.shape[0]
|
|
return loss.masked_fill(pad_mask.unsqueeze(-1), 0).sum() / denom
|
|
|
|
|
|
class NllLoss(nn.Module):
|
|
"""Nll loss.
|
|
|
|
:param int size: the number of class
|
|
:param int padding_idx: ignored class id
|
|
:param bool normalize_length: normalize loss by sequence length if True
|
|
:param torch.nn.Module criterion: loss function
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
size,
|
|
padding_idx,
|
|
normalize_length=False,
|
|
criterion=nn.NLLLoss(reduction="none"),
|
|
):
|
|
"""Construct an NllLoss object."""
|
|
super(NllLoss, self).__init__()
|
|
self.criterion = criterion
|
|
self.padding_idx = padding_idx
|
|
self.size = size
|
|
self.true_dist = None
|
|
self.normalize_length = normalize_length
|
|
|
|
def forward(self, x, target):
|
|
"""Compute loss between x and target.
|
|
|
|
:param torch.Tensor x: prediction (batch, seqlen, class)
|
|
:param torch.Tensor target:
|
|
target signal masked with self.padding_id (batch, seqlen)
|
|
:return: scalar float value
|
|
:rtype torch.Tensor
|
|
"""
|
|
assert x.size(2) == self.size
|
|
batch_size = x.size(0)
|
|
x = x.view(-1, self.size)
|
|
target = target.view(-1)
|
|
with torch.no_grad():
|
|
ignore = target == self.padding_idx # (B,)
|
|
total = len(target) - ignore.sum().item()
|
|
target = target.masked_fill(ignore, 0) # avoid -1 index
|
|
kl = self.criterion(x, target)
|
|
denom = total if self.normalize_length else batch_size
|
|
return kl.masked_fill(ignore, 0).sum() / denom
|