FunASR/funasr/datasets/large_datasets/utils/padding.py

73 lines
3.0 KiB
Python

import numpy as np
import torch
from torch.nn.utils.rnn import pad_sequence
def padding(data, float_pad_value=0.0, int_pad_value=-1):
assert isinstance(data, list)
assert "key" in data[0]
assert "speech" in data[0] or "text" in data[0]
keys = [x["key"] for x in data]
batch = {}
data_names = data[0].keys()
for data_name in data_names:
if data_name == "key" or data_name == "sampling_rate":
continue
else:
if data_name != "hotword_indxs":
if data[0][data_name].dtype.kind == "i":
pad_value = int_pad_value
tensor_type = torch.int64
else:
pad_value = float_pad_value
tensor_type = torch.float32
tensor_list = [torch.tensor(np.copy(d[data_name]), dtype=tensor_type) for d in data]
tensor_lengths = torch.tensor([len(d[data_name]) for d in data], dtype=torch.int32)
tensor_pad = pad_sequence(tensor_list, batch_first=True, padding_value=pad_value)
batch[data_name] = tensor_pad
batch[data_name + "_lengths"] = tensor_lengths
# SAC LABEL INCLUDE
if "hotword_indxs" in batch:
# if hotword indxs in batch
# use it to slice hotwords out
hotword_list = []
hotword_lengths = []
text = batch["text"]
text_lengths = batch["text_lengths"]
hotword_indxs = batch["hotword_indxs"]
dha_pad = torch.ones_like(text) * -1
_, t1 = text.shape
t1 += 1 # TODO: as parameter which is same as predictor_bias
nth_hw = 0
for b, (hotword_indx, one_text, length) in enumerate(
zip(hotword_indxs, text, text_lengths)
):
dha_pad[b][:length] = 8405
if hotword_indx[0] != -1:
start, end = int(hotword_indx[0]), int(hotword_indx[1])
hotword = one_text[start : end + 1]
hotword_list.append(hotword)
hotword_lengths.append(end - start + 1)
dha_pad[b][start : end + 1] = one_text[start : end + 1]
nth_hw += 1
if len(hotword_indx) == 4 and hotword_indx[2] != -1:
# the second hotword if exist
start, end = int(hotword_indx[2]), int(hotword_indx[3])
hotword_list.append(one_text[start : end + 1])
hotword_lengths.append(end - start + 1)
dha_pad[b][start : end + 1] = one_text[start : end + 1]
nth_hw += 1
hotword_list.append(torch.tensor([1]))
hotword_lengths.append(1)
hotword_pad = pad_sequence(hotword_list, batch_first=True, padding_value=0)
batch["hotword_pad"] = hotword_pad
batch["hotword_lengths"] = torch.tensor(hotword_lengths, dtype=torch.int32)
batch["dha_pad"] = dha_pad
del batch["hotword_indxs"]
del batch["hotword_indxs_lengths"]
return keys, batch