300 lines
11 KiB
Python
300 lines
11 KiB
Python
import logging
|
|
import os
|
|
import random
|
|
from functools import partial
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
import torchaudio
|
|
import numpy as np
|
|
|
|
# import librosa
|
|
import librosa
|
|
from kaldiio import ReadHelper
|
|
from torch.utils.data import IterableDataset
|
|
|
|
from funasr.datasets.large_datasets.datapipes.batch import MaxTokenBucketizerIterDataPipe
|
|
from funasr.datasets.large_datasets.datapipes.filter import FilterIterDataPipe
|
|
from funasr.datasets.large_datasets.datapipes.map import MapperIterDataPipe
|
|
from funasr.datasets.large_datasets.utils.clipping import clipping
|
|
from funasr.datasets.large_datasets.utils.filter import filter
|
|
from funasr.datasets.large_datasets.utils.padding import padding
|
|
from funasr.datasets.large_datasets.utils.tokenize import tokenize
|
|
|
|
|
|
def read_lists(list_file):
|
|
lists = []
|
|
with open(list_file, "r", encoding="utf8") as fin:
|
|
for line in fin:
|
|
parts = line.strip()
|
|
lists.append(parts)
|
|
return lists
|
|
|
|
|
|
class AudioDataset(IterableDataset):
|
|
def __init__(
|
|
self,
|
|
scp_lists,
|
|
data_names,
|
|
data_types,
|
|
frontend_conf=None,
|
|
shuffle=True,
|
|
speed_perturb=None,
|
|
mode="train",
|
|
):
|
|
self.scp_lists = scp_lists
|
|
self.data_names = data_names
|
|
self.data_types = data_types
|
|
self.frontend_conf = frontend_conf
|
|
self.shuffle = shuffle
|
|
self.mode = mode
|
|
self.epoch = -1
|
|
self.rank = 0
|
|
self.world_size = 1
|
|
self.worker_id = 0
|
|
self.num_workers = 1
|
|
self.speed_perturb = speed_perturb
|
|
if self.speed_perturb is not None:
|
|
logging.info("Using speed_perturb: {}".format(speed_perturb))
|
|
|
|
def set_epoch(self, epoch):
|
|
self.epoch = epoch
|
|
|
|
def get_rank_data_list(self, data_index):
|
|
assert dist.is_available()
|
|
if dist.is_initialized():
|
|
self.rank = dist.get_rank()
|
|
self.world_size = dist.get_world_size()
|
|
else:
|
|
self.rank = 0
|
|
self.world_size = 1
|
|
|
|
if self.mode == "train":
|
|
if self.shuffle:
|
|
random.seed(self.epoch)
|
|
random.shuffle(data_index)
|
|
return data_index[self.rank :: self.world_size]
|
|
|
|
return data_index
|
|
|
|
def get_worker_data_list(self, rank_data_index):
|
|
worker_info = torch.utils.data.get_worker_info()
|
|
if worker_info is None:
|
|
self.worker_id = 0
|
|
self.num_workers = 1
|
|
else:
|
|
self.worker_id = worker_info.id
|
|
self.num_workers = worker_info.num_workers
|
|
|
|
return rank_data_index[self.worker_id :: self.num_workers]
|
|
|
|
def close_reader(self, reader_list):
|
|
for reader in reader_list:
|
|
reader.close()
|
|
|
|
def __iter__(self):
|
|
data_index = list(range(len(self.scp_lists)))
|
|
rank_data_index = self.get_rank_data_list(data_index)
|
|
worker_data_index = self.get_worker_data_list(rank_data_index)
|
|
|
|
for index in worker_data_index:
|
|
data = dict(scp=self.scp_lists[index])
|
|
|
|
assert "scp" in data
|
|
scp = data["scp"]
|
|
data_file_list = scp.strip().split()
|
|
data_name_list = self.data_names.split(",")
|
|
data_type_list = self.data_types.split(",")
|
|
|
|
for file in data_file_list:
|
|
assert os.path.exists(file), "{} not exists".format(file)
|
|
|
|
assert (
|
|
len(data_file_list) == len(data_name_list) == len(data_type_list)
|
|
), "The item number of data, data_names, data_types must be the same "
|
|
|
|
reader_list = []
|
|
for data_file, data_type in zip(data_file_list, data_type_list):
|
|
if data_type == "kaldi_ark":
|
|
ark_reader = ReadHelper("ark:{}".format(data_file))
|
|
reader_list.append(ark_reader)
|
|
elif data_type == "text" or data_type == "sound" or data_type == "text_hotword":
|
|
text_reader = open(data_file, "r", encoding="utf-8")
|
|
reader_list.append(text_reader)
|
|
elif data_type == "none":
|
|
continue
|
|
else:
|
|
raise TypeError("Data type {} is not supported".format(data_type))
|
|
|
|
for items in zip(*reader_list):
|
|
sample_dict = {}
|
|
for item, (data_name, data_type) in zip(items, zip(data_name_list, data_type_list)):
|
|
if data_type == "kaldi_ark":
|
|
key, mat = item
|
|
sample_dict[data_name] = mat
|
|
if data_name == "speech":
|
|
sample_dict["key"] = key
|
|
elif data_type == "sound":
|
|
key, path = item.strip().split()
|
|
try:
|
|
waveform, sampling_rate = torchaudio.load(path)
|
|
except:
|
|
# waveform, sampling_rate = librosa.load(path, dtype='float32')
|
|
waveform, sampling_rate = librosa.load(path, dtype="float32")
|
|
if waveform.ndim == 2:
|
|
waveform = waveform[:, 0]
|
|
waveform = np.expand_dims(waveform, axis=0)
|
|
waveform = torch.tensor(waveform)
|
|
if self.frontend_conf is not None:
|
|
if sampling_rate != self.frontend_conf["fs"]:
|
|
waveform = torchaudio.transforms.Resample(
|
|
orig_freq=sampling_rate, new_freq=self.frontend_conf["fs"]
|
|
)(waveform)
|
|
sampling_rate = self.frontend_conf["fs"]
|
|
waveform = waveform.numpy()
|
|
mat = waveform[0]
|
|
if self.speed_perturb is not None:
|
|
speed = random.choice(self.speed_perturb)
|
|
if speed != 1.0:
|
|
mat, _ = torchaudio.sox_effects.apply_effects_tensor(
|
|
torch.tensor(mat).view(1, -1),
|
|
sampling_rate,
|
|
[["speed", str(speed)], ["rate", str(sampling_rate)]],
|
|
)
|
|
mat = mat.view(-1).numpy()
|
|
sample_dict[data_name] = mat
|
|
sample_dict["sampling_rate"] = sampling_rate
|
|
if data_name == "speech":
|
|
sample_dict["key"] = key
|
|
elif data_type == "text_hotword":
|
|
text = item
|
|
segs = text.strip().split()
|
|
sample_dict[data_name] = segs[1:]
|
|
if "key" not in sample_dict:
|
|
sample_dict["key"] = segs[0]
|
|
sample_dict["hw_tag"] = 1
|
|
elif data_type == "text_nospace":
|
|
text = item
|
|
segs = text.strip().split(maxsplit=1)
|
|
sample_dict[data_name] = [x for x in segs[1]]
|
|
if "key" not in sample_dict:
|
|
sample_dict["key"] = segs[0]
|
|
else:
|
|
text = item
|
|
segs = text.strip().split()
|
|
sample_dict[data_name] = segs[1:]
|
|
if "key" not in sample_dict:
|
|
sample_dict["key"] = segs[0]
|
|
yield sample_dict
|
|
|
|
self.close_reader(reader_list)
|
|
|
|
|
|
def len_fn_example(data):
|
|
return 1
|
|
|
|
|
|
def len_fn_token(data):
|
|
assert "speech" in data
|
|
if "sampling_rate" in data:
|
|
return (data["speech"].shape[0] / data["sampling_rate"]) * 1000.0
|
|
else:
|
|
return data["speech"].shape[0]
|
|
|
|
|
|
def Dataset(
|
|
data_list_file,
|
|
dict,
|
|
seg_dict,
|
|
punc_dict,
|
|
bpe_tokenizer,
|
|
conf,
|
|
frontend_conf,
|
|
speed_perturb=None,
|
|
mode="train",
|
|
batch_mode="padding",
|
|
):
|
|
scp_lists = read_lists(data_list_file)
|
|
shuffle = conf.get("shuffle", True)
|
|
data_names = conf.get("data_names", "speech,text")
|
|
data_types = conf.get("data_types", "kaldi_ark,text")
|
|
|
|
pre_hwfile = conf.get("pre_hwlist", None)
|
|
# pre_prob = conf.get("pre_prob", 0) # unused yet
|
|
if pre_hwfile is not None:
|
|
pre_hwlist = []
|
|
with open(pre_hwfile, "r", encoding="utf-8") as fin:
|
|
for line in fin.readlines():
|
|
pre_hwlist.append(line.strip())
|
|
else:
|
|
pre_hwlist = None
|
|
|
|
hw_config = {
|
|
"sample_rate": conf.get("sample_rate", 0.6),
|
|
"double_rate": conf.get("double_rate", 0.1),
|
|
"hotword_min_length": conf.get("hotword_min_length", 2),
|
|
"hotword_max_length": conf.get("hotword_max_length", 8),
|
|
"pre_prob": conf.get("pre_prob", 0.0),
|
|
"pre_hwlist": pre_hwlist,
|
|
}
|
|
|
|
dataset = AudioDataset(
|
|
scp_lists,
|
|
data_names,
|
|
data_types,
|
|
frontend_conf=frontend_conf,
|
|
shuffle=shuffle,
|
|
speed_perturb=speed_perturb,
|
|
mode=mode,
|
|
)
|
|
|
|
if "text" in data_names:
|
|
vocab = {
|
|
"vocab": dict,
|
|
"seg_dict": seg_dict,
|
|
"punc_dict": punc_dict,
|
|
"bpe_tokenizer": bpe_tokenizer,
|
|
"hw_config": hw_config,
|
|
}
|
|
tokenize_fn = partial(tokenize, **vocab)
|
|
dataset = MapperIterDataPipe(dataset, fn=tokenize_fn)
|
|
|
|
filter_conf = conf.get("filter_conf", {})
|
|
filter_fn = partial(filter, **filter_conf)
|
|
dataset = FilterIterDataPipe(dataset, fn=filter_fn)
|
|
|
|
if shuffle:
|
|
buffer_conf = conf.get("shuffle_conf", {})
|
|
buffer_size = buffer_conf["shuffle_size"]
|
|
sort_size = buffer_conf["sort_size"]
|
|
else:
|
|
buffer_size = 0
|
|
sort_size = 1
|
|
|
|
batch_conf = conf.get("batch_conf", {})
|
|
batch_size = batch_conf["batch_size"]
|
|
batch_type = batch_conf["batch_type"]
|
|
|
|
assert batch_type in ["example", "token"]
|
|
if batch_type == "example":
|
|
len_fn = len_fn_example
|
|
else:
|
|
len_fn = len_fn_token
|
|
|
|
dataset = MaxTokenBucketizerIterDataPipe(
|
|
dataset,
|
|
batch_size=batch_size,
|
|
len_fn=len_fn,
|
|
buffer_size=buffer_size,
|
|
sort_size=sort_size,
|
|
batch_mode=batch_mode,
|
|
)
|
|
|
|
int_pad_value = conf.get("int_pad_value", -1)
|
|
float_pad_value = conf.get("float_pad_value", 0.0)
|
|
padding_conf = {"int_pad_value": int_pad_value, "float_pad_value": float_pad_value}
|
|
padding_fn = partial(padding, **padding_conf)
|
|
dataset = MapperIterDataPipe(dataset, fn=padding_fn if batch_mode == "padding" else clipping)
|
|
|
|
return dataset
|