124 lines
4.2 KiB
Python
124 lines
4.2 KiB
Python
import os
|
|
import json
|
|
import torch
|
|
import logging
|
|
import hydra
|
|
from omegaconf import DictConfig, OmegaConf
|
|
import concurrent.futures
|
|
import librosa
|
|
import torch.distributed as dist
|
|
from tqdm import tqdm
|
|
|
|
|
|
def gen_jsonl_from_wav_text_list(
|
|
path, data_type_list=("source", "target"), jsonl_file_out: str = None, **kwargs
|
|
):
|
|
try:
|
|
rank = dist.get_rank()
|
|
world_size = dist.get_world_size()
|
|
except:
|
|
rank = 0
|
|
world_size = 1
|
|
|
|
cpu_cores = os.cpu_count() or 1
|
|
print(f"convert wav.scp text to jsonl, ncpu: {cpu_cores}")
|
|
if rank == 0:
|
|
json_dict = {}
|
|
for data_type, data_file in zip(data_type_list, path):
|
|
json_dict[data_type] = {}
|
|
with open(data_file, "r") as f:
|
|
|
|
data_file_lists = f.readlines()
|
|
lines_for_each_th = (len(data_file_lists) - 1) // cpu_cores + 1
|
|
task_num = cpu_cores if len(data_file_lists) > cpu_cores else 1
|
|
# import pdb;pdb.set_trace()
|
|
if task_num > 1:
|
|
with concurrent.futures.ThreadPoolExecutor(max_workers=cpu_cores) as executor:
|
|
|
|
futures = [
|
|
executor.submit(
|
|
parse_context_length,
|
|
data_file_lists[
|
|
i * lines_for_each_th : (i + 1) * lines_for_each_th
|
|
],
|
|
data_type,
|
|
i,
|
|
)
|
|
for i in range(task_num)
|
|
]
|
|
|
|
for future in concurrent.futures.as_completed(futures):
|
|
|
|
json_dict[data_type].update(future.result())
|
|
else:
|
|
res = parse_context_length(data_file_lists, data_type)
|
|
json_dict[data_type].update(res)
|
|
|
|
with open(jsonl_file_out, "w") as f:
|
|
for key in json_dict[data_type_list[0]].keys():
|
|
jsonl_line = {"key": key}
|
|
for data_file in data_type_list:
|
|
jsonl_line.update(json_dict[data_file][key])
|
|
jsonl_line = json.dumps(jsonl_line, ensure_ascii=False)
|
|
f.write(jsonl_line + "\n")
|
|
f.flush()
|
|
print(f"processed {len(json_dict[data_type_list[0]])} samples")
|
|
|
|
else:
|
|
pass
|
|
|
|
if world_size > 1:
|
|
dist.barrier()
|
|
|
|
|
|
def parse_context_length(data_list: list, data_type: str, id=0):
|
|
pbar = tqdm(total=len(data_list), dynamic_ncols=True)
|
|
res = {}
|
|
for i, line in enumerate(data_list):
|
|
pbar.update(1)
|
|
pbar.set_description(f"cpu: {id}")
|
|
lines = line.strip().split(maxsplit=1)
|
|
key = lines[0]
|
|
line = lines[1] if len(lines) > 1 else ""
|
|
line = line.strip()
|
|
if os.path.exists(line):
|
|
waveform, _ = librosa.load(line, sr=16000)
|
|
sample_num = len(waveform)
|
|
context_len = int(sample_num / 16000 * 1000 / 10)
|
|
else:
|
|
context_len = len(line.split()) if " " in line else len(line)
|
|
res[key] = {data_type: line, f"{data_type}_len": context_len}
|
|
return res
|
|
|
|
|
|
@hydra.main(config_name=None, version_base=None)
|
|
def main_hydra(cfg: DictConfig):
|
|
|
|
kwargs = OmegaConf.to_container(cfg, resolve=True)
|
|
print(kwargs)
|
|
|
|
scp_file_list = kwargs.get(
|
|
"scp_file_list",
|
|
("/Users/zhifu/funasr1.0/test_local/wav.scp", "/Users/zhifu/funasr1.0/test_local/text.txt"),
|
|
)
|
|
if isinstance(scp_file_list, str):
|
|
scp_file_list = eval(scp_file_list)
|
|
data_type_list = kwargs.get("data_type_list", ("source", "target"))
|
|
jsonl_file_out = kwargs.get(
|
|
"jsonl_file_out", "/Users/zhifu/funasr1.0/test_local/audio_datasets.jsonl"
|
|
)
|
|
gen_jsonl_from_wav_text_list(
|
|
scp_file_list, data_type_list=data_type_list, jsonl_file_out=jsonl_file_out
|
|
)
|
|
|
|
|
|
"""
|
|
python -m funasr.datasets.audio_datasets.scp2jsonl \
|
|
++scp_file_list='["/Users/zhifu/funasr1.0/test_local/wav.scp", "/Users/zhifu/funasr1.0/test_local/text.txt"]' \
|
|
++data_type_list='["source", "target"]' \
|
|
++jsonl_file_out=/Users/zhifu/funasr1.0/test_local/audio_datasets.jsonl
|
|
"""
|
|
|
|
if __name__ == "__main__":
|
|
main_hydra()
|