FunASR/funasr/datasets/audio_datasets/index_ds.py

145 lines
5.7 KiB
Python

import os
import json
import torch
import logging
import librosa
import random
import torch.distributed as dist
from funasr.register import tables
@tables.register("index_ds_classes", "IndexDSJsonl")
@tables.register("index_ds_classes", "IndexDSJsonlRankFull")
@tables.register("index_ds_classes", "IndexDSJsonlRankSplit")
class IndexDSJsonlRankFull(torch.utils.data.Dataset):
def __init__(self, path: str, **kwargs):
super().__init__()
self.max_source_length = kwargs.get("max_source_length", 2048)
self.min_source_length = kwargs.get("min_source_length", 0)
self.max_target_length = kwargs.get("max_target_length", 2048)
self.min_target_length = kwargs.get("min_target_length", 0)
self.max_token_length = kwargs.get("max_token_length", 2200)
is_training = kwargs.get("is_training", True)
if not (path.endswith(".jsonl") or path.endswith(".json")):
# jsonl list file
data_split_num = kwargs.get("data_split_num", 1)
data_split_i = kwargs.get("data_split_i", 0)
if not is_training:
data_split_num = 1
data_split_i = 0
with open(path, encoding="utf-8") as fin:
file_list_all = fin.readlines()
num_per_slice = (len(file_list_all) - 1) // data_split_num + 1 # 16
file_list = file_list_all[
data_split_i * num_per_slice : (data_split_i + 1) * num_per_slice
]
logging.info(
f"is_training: {is_training}, data_split_num: {data_split_num}, data_split_i: {data_split_i}, \nfile_list: {file_list}, \nfile_list_all: {file_list_all}"
)
else:
file_list = [path]
# total_num = len(file_list)
# try:
# rank = dist.get_rank()
# world_size = dist.get_world_size()
# except:
# rank = 0
# world_size = 1
# logging.info("distributed is not initialized, only single shard")
#
# if not kwargs.get("rank_split", False):
# logging.info(f"Warning, rank_split disenabled, batch and shuffle data in global")
# rank = 0
# world_size = 1
#
# num_per_rank = total_num // world_size
# if num_per_rank * world_size < total_num:
# logging.info(f"Warning, jsonl file:{total_num} could not be divided by world_size: {world_size}, {path}")
# total_num_needed = num_per_rank * world_size
#
# extra_num = total_num_needed - total_num
# file_list_tmp = random.choices(file_list, k=extra_num)
# file_list += file_list_tmp
# logging.info(f"Warning, after random choices: {file_list}")
#
# file_list_rank = file_list[rank * num_per_rank:(rank + 1) * num_per_rank]
#
# logging.info(
# f"is_training: {is_training}, file_list_rank: {file_list_rank}")
# contents = []
# for file_json in file_list_rank:
contents = []
for file_json in file_list:
with open(file_json.strip(), encoding="utf-8") as fin:
for line in fin:
data = json.loads(line.strip())
if "text" in data: # for sft
contents.append(data["text"])
if "source" in data: # for speech lab pretrain
prompt = data.get("prompt", "<ASR>")
source = data["source"].replace(
"/cpfs01", "/cpfs_speech/data"
) # only use in alibaba gpu group: .replace("/cpfs01", "/cpfs_speech/data")
target = data["target"]
source_len = data.get("source_len", 1)
target_len = data.get("target_len", 0)
if "aishell" in source:
target = target.replace(" ", "")
if (
source_len < self.min_source_length
or source_len > self.max_source_length
):
continue
if (
target_len < self.min_target_length
or target_len > self.max_target_length
):
continue
if (source_len + target_len) > self.max_token_length:
continue
contents_i = {
"source": source,
"prompt": prompt,
"target": target,
"source_len": source_len,
"target_len": target_len,
}
text_language = data.get("text_language", None)
if text_language is not None:
contents_i["text_language"] = text_language
# audio_language = data.get("audio_language", None)
# if audio_language is not None:
# contents_i["audio_language"] = audio_language
contents.append(contents_i)
self.contents = contents
logging.info("total_num of samplers: {}, {}".format(len(self.contents), path))
def __len__(self):
return len(self.contents)
def __getitem__(self, index):
data = self.contents[index]
return data
def get_source_len(self, data_dict):
return data_dict.get("source_len", 1)
def get_target_len(self, data_dict):
return data_dict.get("target_len", 0)