118 lines
4.7 KiB
C++
118 lines
4.7 KiB
C++
// decoder/training-graph-compiler.h
|
|
|
|
// Copyright 2009-2011 Microsoft Corporation
|
|
// 2018 Johns Hopkins University (author: Daniel Povey)
|
|
|
|
// See ../../COPYING for clarification regarding multiple authors
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
|
|
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
|
|
// MERCHANTABLITY OR NON-INFRINGEMENT.
|
|
// See the Apache 2 License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
#ifndef KALDI_DECODER_TRAINING_GRAPH_COMPILER_H_
|
|
#define KALDI_DECODER_TRAINING_GRAPH_COMPILER_H_
|
|
|
|
#include "base/kaldi-common.h"
|
|
#include "hmm/transition-model.h"
|
|
#include "fst/fstlib.h"
|
|
#include "fstext/fstext-lib.h"
|
|
#include "tree/context-dep.h"
|
|
|
|
|
|
namespace kaldi {
|
|
|
|
struct TrainingGraphCompilerOptions {
|
|
|
|
BaseFloat transition_scale;
|
|
BaseFloat self_loop_scale;
|
|
bool rm_eps;
|
|
bool reorder; // (Dan-style graphs)
|
|
|
|
explicit TrainingGraphCompilerOptions(BaseFloat transition_scale = 1.0,
|
|
BaseFloat self_loop_scale = 1.0,
|
|
bool b = true) :
|
|
transition_scale(transition_scale),
|
|
self_loop_scale(self_loop_scale),
|
|
rm_eps(false),
|
|
reorder(b) { }
|
|
|
|
void Register(OptionsItf *opts) {
|
|
opts->Register("transition-scale", &transition_scale, "Scale of transition "
|
|
"probabilities (excluding self-loops)");
|
|
opts->Register("self-loop-scale", &self_loop_scale, "Scale of self-loop vs. "
|
|
"non-self-loop probability mass ");
|
|
opts->Register("reorder", &reorder, "Reorder transition ids for greater decoding efficiency.");
|
|
opts->Register("rm-eps", &rm_eps, "Remove [most] epsilons before minimization (only applicable "
|
|
"if disambig symbols present)");
|
|
}
|
|
};
|
|
|
|
|
|
class TrainingGraphCompiler {
|
|
public:
|
|
TrainingGraphCompiler(const TransitionModel &trans_model, // Maintains reference to this object.
|
|
const ContextDependency &ctx_dep, // And this.
|
|
fst::VectorFst<fst::StdArc> *lex_fst, // Takes ownership of this object.
|
|
// It should not contain disambiguation symbols or subsequential symbol,
|
|
// but it should contain optional silence.
|
|
const std::vector<int32> &disambig_syms, // disambig symbols in phone symbol table.
|
|
const TrainingGraphCompilerOptions &opts);
|
|
|
|
|
|
// CompileGraph compiles a single training graph its input is a
|
|
// weighted acceptor (G) at the word level, its output is HCLG.
|
|
// Note: G could actually be a transducer, it would also work.
|
|
// This function is not const for technical reasons involving the cache.
|
|
// if not for "table_compose" we could make it const.
|
|
bool CompileGraph(const fst::VectorFst<fst::StdArc> &word_grammar,
|
|
fst::VectorFst<fst::StdArc> *out_fst);
|
|
|
|
// Same as `CompileGraph`, but uses an external LG fst.
|
|
bool CompileGraphFromLG(const fst::VectorFst<fst::StdArc> &phone2word_fst,
|
|
fst::VectorFst<fst::StdArc> * out_fst);
|
|
|
|
// CompileGraphs allows you to compile a number of graphs at the same
|
|
// time. This consumes more memory but is faster.
|
|
bool CompileGraphs(
|
|
const std::vector<const fst::VectorFst<fst::StdArc> *> &word_fsts,
|
|
std::vector<fst::VectorFst<fst::StdArc> *> *out_fsts);
|
|
|
|
// This version creates an FST from the text and calls CompileGraph.
|
|
bool CompileGraphFromText(const std::vector<int32> &transcript,
|
|
fst::VectorFst<fst::StdArc> *out_fst);
|
|
|
|
// This function creates FSTs from the text and calls CompileGraphs.
|
|
bool CompileGraphsFromText(
|
|
const std::vector<std::vector<int32> > &word_grammar,
|
|
std::vector<fst::VectorFst<fst::StdArc> *> *out_fsts);
|
|
|
|
|
|
~TrainingGraphCompiler() { delete lex_fst_; }
|
|
private:
|
|
const TransitionModel &trans_model_;
|
|
const ContextDependency &ctx_dep_;
|
|
fst::VectorFst<fst::StdArc> *lex_fst_; // lexicon FST (an input; we take
|
|
// ownership as we need to modify it).
|
|
std::vector<int32> disambig_syms_; // disambig symbols (if any) in the phone
|
|
int32 subsequential_symbol_; // search in ../fstext/context-fst.h for more info.
|
|
// symbol table.
|
|
fst::TableComposeCache<fst::Fst<fst::StdArc> > lex_cache_; // stores matcher..
|
|
// this is one of Dan's extensions.
|
|
|
|
TrainingGraphCompilerOptions opts_;
|
|
};
|
|
|
|
|
|
|
|
} // end namespace kaldi.
|
|
|
|
#endif
|