FunASR/funasr/tokenizer/sentencepiece_tokenizer.py

52 lines
1.7 KiB
Python

from pathlib import Path
from typing import Iterable
from typing import List
from typing import Union
import sentencepiece as spm
from funasr.tokenizer.abs_tokenizer import BaseTokenizer
from funasr.register import tables
@tables.register("tokenizer_classes", "SentencepiecesTokenizer")
class SentencepiecesTokenizer(BaseTokenizer):
def __init__(self, bpemodel: Union[Path, str], **kwargs):
super().__init__(**kwargs)
self.bpemodel = str(bpemodel)
# NOTE(kamo):
# Don't build SentencePieceProcessor in __init__()
# because it's not picklable and it may cause following error,
# "TypeError: can't pickle SwigPyObject objects",
# when giving it as argument of "multiprocessing.Process()".
self.sp = None
self._build_sentence_piece_processor()
def __repr__(self):
return f'{self.__class__.__name__}(model="{self.bpemodel}")'
def _build_sentence_piece_processor(self):
# Build SentencePieceProcessor lazily.
if self.sp is None:
self.sp = spm.SentencePieceProcessor()
self.sp.load(self.bpemodel)
def text2tokens(self, line: str) -> List[str]:
self._build_sentence_piece_processor()
return self.sp.EncodeAsPieces(line)
def tokens2text(self, tokens: Iterable[str]) -> str:
self._build_sentence_piece_processor()
return self.sp.DecodePieces(list(tokens))
def encode(self, line: str, **kwargs) -> List[int]:
self._build_sentence_piece_processor()
return self.sp.EncodeAsIds(line)
def decode(self, line: List[int], **kwargs):
self._build_sentence_piece_processor()
return self.sp.DecodeIds(line)
def get_vocab_size(self):
return self.sp.GetPieceSize()