42 lines
1.2 KiB
Python
42 lines
1.2 KiB
Python
import torch
|
|
from torch.optim.lr_scheduler import _LRScheduler
|
|
|
|
|
|
# class CustomLambdaLR(_LRScheduler):
|
|
# def __init__(self, optimizer, warmup_steps, last_epoch=-1):
|
|
# self.warmup_steps = warmup_steps
|
|
# super().__init__(optimizer, last_epoch)
|
|
#
|
|
# def get_lr(self):
|
|
# if self.last_epoch < self.warmup_steps:
|
|
# return [
|
|
# base_lr * min(self.last_epoch / self.warmup_steps, 1) for base_lr in self.base_lrs
|
|
# ]
|
|
# else:
|
|
# return [base_lr for base_lr in self.base_lrs]
|
|
|
|
|
|
class CustomLambdaLR(_LRScheduler):
|
|
def __init__(
|
|
self,
|
|
optimizer,
|
|
warmup_steps: int = 25000,
|
|
total_steps: int = 500000,
|
|
last_epoch=-1,
|
|
verbose=False,
|
|
):
|
|
self.warmup_steps = warmup_steps
|
|
self.total_steps = total_steps
|
|
super().__init__(optimizer, last_epoch, verbose)
|
|
|
|
def get_lr(self):
|
|
|
|
step = self.last_epoch + 1
|
|
if step < self.warmup_steps:
|
|
lr_scale = step / self.warmup_steps
|
|
else:
|
|
lr_scale = max(
|
|
0.0, 1 - (step - self.warmup_steps) / (self.total_steps - self.warmup_steps)
|
|
)
|
|
return [base_lr * lr_scale for base_lr in self.base_lrs]
|