FunASR/funasr/schedulers/lambdalr_cus.py

42 lines
1.2 KiB
Python

import torch
from torch.optim.lr_scheduler import _LRScheduler
# class CustomLambdaLR(_LRScheduler):
# def __init__(self, optimizer, warmup_steps, last_epoch=-1):
# self.warmup_steps = warmup_steps
# super().__init__(optimizer, last_epoch)
#
# def get_lr(self):
# if self.last_epoch < self.warmup_steps:
# return [
# base_lr * min(self.last_epoch / self.warmup_steps, 1) for base_lr in self.base_lrs
# ]
# else:
# return [base_lr for base_lr in self.base_lrs]
class CustomLambdaLR(_LRScheduler):
def __init__(
self,
optimizer,
warmup_steps: int = 25000,
total_steps: int = 500000,
last_epoch=-1,
verbose=False,
):
self.warmup_steps = warmup_steps
self.total_steps = total_steps
super().__init__(optimizer, last_epoch, verbose)
def get_lr(self):
step = self.last_epoch + 1
if step < self.warmup_steps:
lr_scale = step / self.warmup_steps
else:
lr_scale = max(
0.0, 1 - (step - self.warmup_steps) / (self.total_steps - self.warmup_steps)
)
return [base_lr * lr_scale for base_lr in self.base_lrs]