157 lines
4.9 KiB
Python
157 lines
4.9 KiB
Python
"""ScorerInterface implementation for CTC."""
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from funasr.models.transformer.scorers.ctc_prefix_score import CTCPrefixScore
|
|
from funasr.models.transformer.scorers.ctc_prefix_score import CTCPrefixScoreTH
|
|
from funasr.models.transformer.scorers.scorer_interface import BatchPartialScorerInterface
|
|
|
|
|
|
class CTCPrefixScorer(BatchPartialScorerInterface):
|
|
"""Decoder interface wrapper for CTCPrefixScore."""
|
|
|
|
def __init__(self, ctc: torch.nn.Module, eos: int):
|
|
"""Initialize class.
|
|
|
|
Args:
|
|
ctc (torch.nn.Module): The CTC implementation.
|
|
For example, :class:`espnet.nets.pytorch_backend.ctc.CTC`
|
|
eos (int): The end-of-sequence id.
|
|
|
|
"""
|
|
self.ctc = ctc
|
|
self.eos = eos
|
|
self.impl = None
|
|
|
|
def init_state(self, x: torch.Tensor):
|
|
"""Get an initial state for decoding.
|
|
|
|
Args:
|
|
x (torch.Tensor): The encoded feature tensor
|
|
|
|
Returns: initial state
|
|
|
|
"""
|
|
logp = self.ctc.log_softmax(x.unsqueeze(0)).detach().squeeze(0).cpu().numpy()
|
|
# TODO(karita): use CTCPrefixScoreTH
|
|
self.impl = CTCPrefixScore(logp, 0, self.eos, np)
|
|
return 0, self.impl.initial_state()
|
|
|
|
def select_state(self, state, i, new_id=None):
|
|
"""Select state with relative ids in the main beam search.
|
|
|
|
Args:
|
|
state: Decoder state for prefix tokens
|
|
i (int): Index to select a state in the main beam search
|
|
new_id (int): New label id to select a state if necessary
|
|
|
|
Returns:
|
|
state: pruned state
|
|
|
|
"""
|
|
if type(state) == tuple:
|
|
if len(state) == 2: # for CTCPrefixScore
|
|
sc, st = state
|
|
return sc[i], st[i]
|
|
else: # for CTCPrefixScoreTH (need new_id > 0)
|
|
r, log_psi, f_min, f_max, scoring_idmap = state
|
|
s = log_psi[i, new_id].expand(log_psi.size(1))
|
|
if scoring_idmap is not None:
|
|
return r[:, :, i, scoring_idmap[i, new_id]], s, f_min, f_max
|
|
else:
|
|
return r[:, :, i, new_id], s, f_min, f_max
|
|
return None if state is None else state[i]
|
|
|
|
def score_partial(self, y, ids, state, x):
|
|
"""Score new token.
|
|
|
|
Args:
|
|
y (torch.Tensor): 1D prefix token
|
|
next_tokens (torch.Tensor): torch.int64 next token to score
|
|
state: decoder state for prefix tokens
|
|
x (torch.Tensor): 2D encoder feature that generates ys
|
|
|
|
Returns:
|
|
tuple[torch.Tensor, Any]:
|
|
Tuple of a score tensor for y that has a shape `(len(next_tokens),)`
|
|
and next state for ys
|
|
|
|
"""
|
|
prev_score, state = state
|
|
presub_score, new_st = self.impl(y.cpu(), ids.cpu(), state)
|
|
tscore = torch.as_tensor(presub_score - prev_score, device=x.device, dtype=x.dtype)
|
|
return tscore, (presub_score, new_st)
|
|
|
|
def batch_init_state(self, x: torch.Tensor):
|
|
"""Get an initial state for decoding.
|
|
|
|
Args:
|
|
x (torch.Tensor): The encoded feature tensor
|
|
|
|
Returns: initial state
|
|
|
|
"""
|
|
logp = self.ctc.log_softmax(x.unsqueeze(0)) # assuming batch_size = 1
|
|
xlen = torch.tensor([logp.size(1)])
|
|
self.impl = CTCPrefixScoreTH(logp, xlen, 0, self.eos)
|
|
return None
|
|
|
|
def batch_score_partial(self, y, ids, state, x):
|
|
"""Score new token.
|
|
|
|
Args:
|
|
y (torch.Tensor): 1D prefix token
|
|
ids (torch.Tensor): torch.int64 next token to score
|
|
state: decoder state for prefix tokens
|
|
x (torch.Tensor): 2D encoder feature that generates ys
|
|
|
|
Returns:
|
|
tuple[torch.Tensor, Any]:
|
|
Tuple of a score tensor for y that has a shape `(len(next_tokens),)`
|
|
and next state for ys
|
|
|
|
"""
|
|
batch_state = (
|
|
(
|
|
torch.stack([s[0] for s in state], dim=2),
|
|
torch.stack([s[1] for s in state]),
|
|
state[0][2],
|
|
state[0][3],
|
|
)
|
|
if state[0] is not None
|
|
else None
|
|
)
|
|
return self.impl(y, batch_state, ids)
|
|
|
|
def extend_prob(self, x: torch.Tensor):
|
|
"""Extend probs for decoding.
|
|
|
|
This extension is for streaming decoding
|
|
as in Eq (14) in https://arxiv.org/abs/2006.14941
|
|
|
|
Args:
|
|
x (torch.Tensor): The encoded feature tensor
|
|
|
|
"""
|
|
logp = self.ctc.log_softmax(x.unsqueeze(0))
|
|
self.impl.extend_prob(logp)
|
|
|
|
def extend_state(self, state):
|
|
"""Extend state for decoding.
|
|
|
|
This extension is for streaming decoding
|
|
as in Eq (14) in https://arxiv.org/abs/2006.14941
|
|
|
|
Args:
|
|
state: The states of hyps
|
|
|
|
Returns: exteded state
|
|
|
|
"""
|
|
new_state = []
|
|
for s in state:
|
|
new_state.append(self.impl.extend_state(s))
|
|
|
|
return new_state
|