611 lines
23 KiB
Python
611 lines
23 KiB
Python
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
|
|
# Copyright 2019 Shigeki Karita
|
|
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
|
|
|
"""Multi-Head Attention layer definition."""
|
|
|
|
import math
|
|
|
|
import numpy
|
|
import torch
|
|
from torch import nn
|
|
from typing import Optional, Tuple
|
|
|
|
import torch.nn.functional as F
|
|
from funasr.models.transformer.utils.nets_utils import make_pad_mask
|
|
import funasr.models.lora.layers as lora
|
|
|
|
|
|
class MultiHeadedAttention(nn.Module):
|
|
"""Multi-Head Attention layer.
|
|
|
|
Args:
|
|
n_head (int): The number of heads.
|
|
n_feat (int): The number of features.
|
|
dropout_rate (float): Dropout rate.
|
|
|
|
"""
|
|
|
|
def __init__(self, n_head, n_feat, dropout_rate):
|
|
"""Construct an MultiHeadedAttention object."""
|
|
super(MultiHeadedAttention, self).__init__()
|
|
assert n_feat % n_head == 0
|
|
# We assume d_v always equals d_k
|
|
self.d_k = n_feat // n_head
|
|
self.h = n_head
|
|
self.linear_q = nn.Linear(n_feat, n_feat)
|
|
self.linear_k = nn.Linear(n_feat, n_feat)
|
|
self.linear_v = nn.Linear(n_feat, n_feat)
|
|
self.linear_out = nn.Linear(n_feat, n_feat)
|
|
self.attn = None
|
|
self.dropout = nn.Dropout(p=dropout_rate)
|
|
|
|
def forward_qkv(self, query, key, value):
|
|
"""Transform query, key and value.
|
|
|
|
Args:
|
|
query (torch.Tensor): Query tensor (#batch, time1, size).
|
|
key (torch.Tensor): Key tensor (#batch, time2, size).
|
|
value (torch.Tensor): Value tensor (#batch, time2, size).
|
|
|
|
Returns:
|
|
torch.Tensor: Transformed query tensor (#batch, n_head, time1, d_k).
|
|
torch.Tensor: Transformed key tensor (#batch, n_head, time2, d_k).
|
|
torch.Tensor: Transformed value tensor (#batch, n_head, time2, d_k).
|
|
|
|
"""
|
|
n_batch = query.size(0)
|
|
q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
|
|
k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
|
|
v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
|
|
q = q.transpose(1, 2) # (batch, head, time1, d_k)
|
|
k = k.transpose(1, 2) # (batch, head, time2, d_k)
|
|
v = v.transpose(1, 2) # (batch, head, time2, d_k)
|
|
|
|
return q, k, v
|
|
|
|
def forward_attention(self, value, scores, mask):
|
|
"""Compute attention context vector.
|
|
|
|
Args:
|
|
value (torch.Tensor): Transformed value (#batch, n_head, time2, d_k).
|
|
scores (torch.Tensor): Attention score (#batch, n_head, time1, time2).
|
|
mask (torch.Tensor): Mask (#batch, 1, time2) or (#batch, time1, time2).
|
|
|
|
Returns:
|
|
torch.Tensor: Transformed value (#batch, time1, d_model)
|
|
weighted by the attention score (#batch, time1, time2).
|
|
|
|
"""
|
|
n_batch = value.size(0)
|
|
if mask is not None:
|
|
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
|
|
min_value = float(numpy.finfo(torch.tensor(0, dtype=scores.dtype).numpy().dtype).min)
|
|
scores = scores.masked_fill(mask, min_value)
|
|
self.attn = torch.softmax(scores, dim=-1).masked_fill(
|
|
mask, 0.0
|
|
) # (batch, head, time1, time2)
|
|
else:
|
|
self.attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2)
|
|
|
|
p_attn = self.dropout(self.attn)
|
|
x = torch.matmul(p_attn, value) # (batch, head, time1, d_k)
|
|
x = (
|
|
x.transpose(1, 2).contiguous().view(n_batch, -1, self.h * self.d_k)
|
|
) # (batch, time1, d_model)
|
|
|
|
return self.linear_out(x) # (batch, time1, d_model)
|
|
|
|
def forward(self, query, key, value, mask):
|
|
"""Compute scaled dot product attention.
|
|
|
|
Args:
|
|
query (torch.Tensor): Query tensor (#batch, time1, size).
|
|
key (torch.Tensor): Key tensor (#batch, time2, size).
|
|
value (torch.Tensor): Value tensor (#batch, time2, size).
|
|
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
|
|
(#batch, time1, time2).
|
|
|
|
Returns:
|
|
torch.Tensor: Output tensor (#batch, time1, d_model).
|
|
|
|
"""
|
|
q, k, v = self.forward_qkv(query, key, value)
|
|
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
|
|
return self.forward_attention(v, scores, mask)
|
|
|
|
|
|
class MultiHeadedAttentionExport(nn.Module):
|
|
def __init__(self, model):
|
|
super().__init__()
|
|
self.d_k = model.d_k
|
|
self.h = model.h
|
|
self.linear_q = model.linear_q
|
|
self.linear_k = model.linear_k
|
|
self.linear_v = model.linear_v
|
|
self.linear_out = model.linear_out
|
|
self.attn = None
|
|
self.all_head_size = self.h * self.d_k
|
|
|
|
def forward(self, query, key, value, mask):
|
|
q, k, v = self.forward_qkv(query, key, value)
|
|
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
|
|
return self.forward_attention(v, scores, mask)
|
|
|
|
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
|
new_x_shape = x.size()[:-1] + (self.h, self.d_k)
|
|
x = x.view(new_x_shape)
|
|
return x.permute(0, 2, 1, 3)
|
|
|
|
def forward_qkv(self, query, key, value):
|
|
q = self.linear_q(query)
|
|
k = self.linear_k(key)
|
|
v = self.linear_v(value)
|
|
q = self.transpose_for_scores(q)
|
|
k = self.transpose_for_scores(k)
|
|
v = self.transpose_for_scores(v)
|
|
return q, k, v
|
|
|
|
def forward_attention(self, value, scores, mask):
|
|
scores = scores + mask
|
|
|
|
self.attn = torch.softmax(scores, dim=-1)
|
|
context_layer = torch.matmul(self.attn, value) # (batch, head, time1, d_k)
|
|
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
|
context_layer = context_layer.view(new_context_layer_shape)
|
|
return self.linear_out(context_layer) # (batch, time1, d_model)
|
|
|
|
|
|
class RelPosMultiHeadedAttentionExport(MultiHeadedAttentionExport):
|
|
def __init__(self, model):
|
|
super().__init__(model)
|
|
self.linear_pos = model.linear_pos
|
|
self.pos_bias_u = model.pos_bias_u
|
|
self.pos_bias_v = model.pos_bias_v
|
|
|
|
def forward(self, query, key, value, pos_emb, mask):
|
|
q, k, v = self.forward_qkv(query, key, value)
|
|
q = q.transpose(1, 2) # (batch, time1, head, d_k)
|
|
|
|
p = self.transpose_for_scores(self.linear_pos(pos_emb)) # (batch, head, time1, d_k)
|
|
|
|
# (batch, head, time1, d_k)
|
|
q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2)
|
|
# (batch, head, time1, d_k)
|
|
q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2)
|
|
|
|
# compute attention score
|
|
# first compute matrix a and matrix c
|
|
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
|
# (batch, head, time1, time2)
|
|
matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1))
|
|
|
|
# compute matrix b and matrix d
|
|
# (batch, head, time1, time1)
|
|
matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1))
|
|
matrix_bd = self.rel_shift(matrix_bd)
|
|
|
|
scores = (matrix_ac + matrix_bd) / math.sqrt(self.d_k) # (batch, head, time1, time2)
|
|
|
|
return self.forward_attention(v, scores, mask)
|
|
|
|
def rel_shift(self, x):
|
|
zero_pad = torch.zeros((*x.size()[:3], 1), device=x.device, dtype=x.dtype)
|
|
x_padded = torch.cat([zero_pad, x], dim=-1)
|
|
|
|
x_padded = x_padded.view(*x.size()[:2], x.size(3) + 1, x.size(2))
|
|
x = x_padded[:, :, 1:].view_as(x)[
|
|
:, :, :, : x.size(-1) // 2 + 1
|
|
] # only keep the positions from 0 to time2
|
|
return x
|
|
|
|
def forward_attention(self, value, scores, mask):
|
|
scores = scores + mask
|
|
|
|
self.attn = torch.softmax(scores, dim=-1)
|
|
context_layer = torch.matmul(self.attn, value) # (batch, head, time1, d_k)
|
|
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
|
context_layer = context_layer.view(new_context_layer_shape)
|
|
return self.linear_out(context_layer) # (batch, time1, d_model)
|
|
|
|
|
|
class LegacyRelPositionMultiHeadedAttention(MultiHeadedAttention):
|
|
"""Multi-Head Attention layer with relative position encoding (old version).
|
|
|
|
Details can be found in https://github.com/espnet/espnet/pull/2816.
|
|
|
|
Paper: https://arxiv.org/abs/1901.02860
|
|
|
|
Args:
|
|
n_head (int): The number of heads.
|
|
n_feat (int): The number of features.
|
|
dropout_rate (float): Dropout rate.
|
|
zero_triu (bool): Whether to zero the upper triangular part of attention matrix.
|
|
|
|
"""
|
|
|
|
def __init__(self, n_head, n_feat, dropout_rate, zero_triu=False):
|
|
"""Construct an RelPositionMultiHeadedAttention object."""
|
|
super().__init__(n_head, n_feat, dropout_rate)
|
|
self.zero_triu = zero_triu
|
|
# linear transformation for positional encoding
|
|
self.linear_pos = nn.Linear(n_feat, n_feat, bias=False)
|
|
# these two learnable bias are used in matrix c and matrix d
|
|
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
|
self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k))
|
|
self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k))
|
|
torch.nn.init.xavier_uniform_(self.pos_bias_u)
|
|
torch.nn.init.xavier_uniform_(self.pos_bias_v)
|
|
|
|
def rel_shift(self, x):
|
|
"""Compute relative positional encoding.
|
|
|
|
Args:
|
|
x (torch.Tensor): Input tensor (batch, head, time1, time2).
|
|
|
|
Returns:
|
|
torch.Tensor: Output tensor.
|
|
|
|
"""
|
|
zero_pad = torch.zeros((*x.size()[:3], 1), device=x.device, dtype=x.dtype)
|
|
x_padded = torch.cat([zero_pad, x], dim=-1)
|
|
|
|
x_padded = x_padded.view(*x.size()[:2], x.size(3) + 1, x.size(2))
|
|
x = x_padded[:, :, 1:].view_as(x)
|
|
|
|
if self.zero_triu:
|
|
ones = torch.ones((x.size(2), x.size(3)))
|
|
x = x * torch.tril(ones, x.size(3) - x.size(2))[None, None, :, :]
|
|
|
|
return x
|
|
|
|
def forward(self, query, key, value, pos_emb, mask):
|
|
"""Compute 'Scaled Dot Product Attention' with rel. positional encoding.
|
|
|
|
Args:
|
|
query (torch.Tensor): Query tensor (#batch, time1, size).
|
|
key (torch.Tensor): Key tensor (#batch, time2, size).
|
|
value (torch.Tensor): Value tensor (#batch, time2, size).
|
|
pos_emb (torch.Tensor): Positional embedding tensor (#batch, time1, size).
|
|
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
|
|
(#batch, time1, time2).
|
|
|
|
Returns:
|
|
torch.Tensor: Output tensor (#batch, time1, d_model).
|
|
|
|
"""
|
|
q, k, v = self.forward_qkv(query, key, value)
|
|
q = q.transpose(1, 2) # (batch, time1, head, d_k)
|
|
|
|
n_batch_pos = pos_emb.size(0)
|
|
p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k)
|
|
p = p.transpose(1, 2) # (batch, head, time1, d_k)
|
|
|
|
# (batch, head, time1, d_k)
|
|
q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2)
|
|
# (batch, head, time1, d_k)
|
|
q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2)
|
|
|
|
# compute attention score
|
|
# first compute matrix a and matrix c
|
|
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
|
# (batch, head, time1, time2)
|
|
matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1))
|
|
|
|
# compute matrix b and matrix d
|
|
# (batch, head, time1, time1)
|
|
matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1))
|
|
matrix_bd = self.rel_shift(matrix_bd)
|
|
|
|
scores = (matrix_ac + matrix_bd) / math.sqrt(self.d_k) # (batch, head, time1, time2)
|
|
|
|
return self.forward_attention(v, scores, mask)
|
|
|
|
|
|
class RelPositionMultiHeadedAttention(MultiHeadedAttention):
|
|
"""Multi-Head Attention layer with relative position encoding (new implementation).
|
|
|
|
Details can be found in https://github.com/espnet/espnet/pull/2816.
|
|
|
|
Paper: https://arxiv.org/abs/1901.02860
|
|
|
|
Args:
|
|
n_head (int): The number of heads.
|
|
n_feat (int): The number of features.
|
|
dropout_rate (float): Dropout rate.
|
|
zero_triu (bool): Whether to zero the upper triangular part of attention matrix.
|
|
|
|
"""
|
|
|
|
def __init__(self, n_head, n_feat, dropout_rate, zero_triu=False):
|
|
"""Construct an RelPositionMultiHeadedAttention object."""
|
|
super().__init__(n_head, n_feat, dropout_rate)
|
|
self.zero_triu = zero_triu
|
|
# linear transformation for positional encoding
|
|
self.linear_pos = nn.Linear(n_feat, n_feat, bias=False)
|
|
# these two learnable bias are used in matrix c and matrix d
|
|
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
|
self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k))
|
|
self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k))
|
|
torch.nn.init.xavier_uniform_(self.pos_bias_u)
|
|
torch.nn.init.xavier_uniform_(self.pos_bias_v)
|
|
|
|
def rel_shift(self, x):
|
|
"""Compute relative positional encoding.
|
|
|
|
Args:
|
|
x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1).
|
|
time1 means the length of query vector.
|
|
|
|
Returns:
|
|
torch.Tensor: Output tensor.
|
|
|
|
"""
|
|
zero_pad = torch.zeros((*x.size()[:3], 1), device=x.device, dtype=x.dtype)
|
|
x_padded = torch.cat([zero_pad, x], dim=-1)
|
|
|
|
x_padded = x_padded.view(*x.size()[:2], x.size(3) + 1, x.size(2))
|
|
x = x_padded[:, :, 1:].view_as(x)[
|
|
:, :, :, : x.size(-1) // 2 + 1
|
|
] # only keep the positions from 0 to time2
|
|
|
|
if self.zero_triu:
|
|
ones = torch.ones((x.size(2), x.size(3)), device=x.device)
|
|
x = x * torch.tril(ones, x.size(3) - x.size(2))[None, None, :, :]
|
|
|
|
return x
|
|
|
|
def forward(self, query, key, value, pos_emb, mask):
|
|
"""Compute 'Scaled Dot Product Attention' with rel. positional encoding.
|
|
|
|
Args:
|
|
query (torch.Tensor): Query tensor (#batch, time1, size).
|
|
key (torch.Tensor): Key tensor (#batch, time2, size).
|
|
value (torch.Tensor): Value tensor (#batch, time2, size).
|
|
pos_emb (torch.Tensor): Positional embedding tensor
|
|
(#batch, 2*time1-1, size).
|
|
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
|
|
(#batch, time1, time2).
|
|
|
|
Returns:
|
|
torch.Tensor: Output tensor (#batch, time1, d_model).
|
|
|
|
"""
|
|
q, k, v = self.forward_qkv(query, key, value)
|
|
q = q.transpose(1, 2) # (batch, time1, head, d_k)
|
|
|
|
n_batch_pos = pos_emb.size(0)
|
|
p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k)
|
|
p = p.transpose(1, 2) # (batch, head, 2*time1-1, d_k)
|
|
|
|
# (batch, head, time1, d_k)
|
|
q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2)
|
|
# (batch, head, time1, d_k)
|
|
q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2)
|
|
|
|
# compute attention score
|
|
# first compute matrix a and matrix c
|
|
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
|
# (batch, head, time1, time2)
|
|
matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1))
|
|
|
|
# compute matrix b and matrix d
|
|
# (batch, head, time1, 2*time1-1)
|
|
matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1))
|
|
matrix_bd = self.rel_shift(matrix_bd)
|
|
|
|
scores = (matrix_ac + matrix_bd) / math.sqrt(self.d_k) # (batch, head, time1, time2)
|
|
|
|
return self.forward_attention(v, scores, mask)
|
|
|
|
|
|
class RelPositionMultiHeadedAttentionChunk(torch.nn.Module):
|
|
"""RelPositionMultiHeadedAttention definition.
|
|
Args:
|
|
num_heads: Number of attention heads.
|
|
embed_size: Embedding size.
|
|
dropout_rate: Dropout rate.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
num_heads: int,
|
|
embed_size: int,
|
|
dropout_rate: float = 0.0,
|
|
simplified_attention_score: bool = False,
|
|
) -> None:
|
|
"""Construct an MultiHeadedAttention object."""
|
|
super().__init__()
|
|
|
|
self.d_k = embed_size // num_heads
|
|
self.num_heads = num_heads
|
|
|
|
assert self.d_k * num_heads == embed_size, (
|
|
"embed_size (%d) must be divisible by num_heads (%d)",
|
|
(embed_size, num_heads),
|
|
)
|
|
|
|
self.linear_q = torch.nn.Linear(embed_size, embed_size)
|
|
self.linear_k = torch.nn.Linear(embed_size, embed_size)
|
|
self.linear_v = torch.nn.Linear(embed_size, embed_size)
|
|
|
|
self.linear_out = torch.nn.Linear(embed_size, embed_size)
|
|
|
|
if simplified_attention_score:
|
|
self.linear_pos = torch.nn.Linear(embed_size, num_heads)
|
|
|
|
self.compute_att_score = self.compute_simplified_attention_score
|
|
else:
|
|
self.linear_pos = torch.nn.Linear(embed_size, embed_size, bias=False)
|
|
|
|
self.pos_bias_u = torch.nn.Parameter(torch.Tensor(num_heads, self.d_k))
|
|
self.pos_bias_v = torch.nn.Parameter(torch.Tensor(num_heads, self.d_k))
|
|
torch.nn.init.xavier_uniform_(self.pos_bias_u)
|
|
torch.nn.init.xavier_uniform_(self.pos_bias_v)
|
|
|
|
self.compute_att_score = self.compute_attention_score
|
|
|
|
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
|
self.attn = None
|
|
|
|
def rel_shift(self, x: torch.Tensor, left_context: int = 0) -> torch.Tensor:
|
|
"""Compute relative positional encoding.
|
|
Args:
|
|
x: Input sequence. (B, H, T_1, 2 * T_1 - 1)
|
|
left_context: Number of frames in left context.
|
|
Returns:
|
|
x: Output sequence. (B, H, T_1, T_2)
|
|
"""
|
|
batch_size, n_heads, time1, n = x.shape
|
|
time2 = time1 + left_context
|
|
|
|
batch_stride, n_heads_stride, time1_stride, n_stride = x.stride()
|
|
|
|
return x.as_strided(
|
|
(batch_size, n_heads, time1, time2),
|
|
(batch_stride, n_heads_stride, time1_stride - n_stride, n_stride),
|
|
storage_offset=(n_stride * (time1 - 1)),
|
|
)
|
|
|
|
def compute_simplified_attention_score(
|
|
self,
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
pos_enc: torch.Tensor,
|
|
left_context: int = 0,
|
|
) -> torch.Tensor:
|
|
"""Simplified attention score computation.
|
|
Reference: https://github.com/k2-fsa/icefall/pull/458
|
|
Args:
|
|
query: Transformed query tensor. (B, H, T_1, d_k)
|
|
key: Transformed key tensor. (B, H, T_2, d_k)
|
|
pos_enc: Positional embedding tensor. (B, 2 * T_1 - 1, size)
|
|
left_context: Number of frames in left context.
|
|
Returns:
|
|
: Attention score. (B, H, T_1, T_2)
|
|
"""
|
|
pos_enc = self.linear_pos(pos_enc)
|
|
|
|
matrix_ac = torch.matmul(query, key.transpose(2, 3))
|
|
|
|
matrix_bd = self.rel_shift(
|
|
pos_enc.transpose(1, 2).unsqueeze(2).repeat(1, 1, query.size(2), 1),
|
|
left_context=left_context,
|
|
)
|
|
|
|
return (matrix_ac + matrix_bd) / math.sqrt(self.d_k)
|
|
|
|
def compute_attention_score(
|
|
self,
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
pos_enc: torch.Tensor,
|
|
left_context: int = 0,
|
|
) -> torch.Tensor:
|
|
"""Attention score computation.
|
|
Args:
|
|
query: Transformed query tensor. (B, H, T_1, d_k)
|
|
key: Transformed key tensor. (B, H, T_2, d_k)
|
|
pos_enc: Positional embedding tensor. (B, 2 * T_1 - 1, size)
|
|
left_context: Number of frames in left context.
|
|
Returns:
|
|
: Attention score. (B, H, T_1, T_2)
|
|
"""
|
|
p = self.linear_pos(pos_enc).view(pos_enc.size(0), -1, self.num_heads, self.d_k)
|
|
|
|
query = query.transpose(1, 2)
|
|
q_with_bias_u = (query + self.pos_bias_u).transpose(1, 2)
|
|
q_with_bias_v = (query + self.pos_bias_v).transpose(1, 2)
|
|
|
|
matrix_ac = torch.matmul(q_with_bias_u, key.transpose(-2, -1))
|
|
|
|
matrix_bd = torch.matmul(q_with_bias_v, p.permute(0, 2, 3, 1))
|
|
matrix_bd = self.rel_shift(matrix_bd, left_context=left_context)
|
|
|
|
return (matrix_ac + matrix_bd) / math.sqrt(self.d_k)
|
|
|
|
def forward_qkv(
|
|
self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
"""Transform query, key and value.
|
|
Args:
|
|
query: Query tensor. (B, T_1, size)
|
|
key: Key tensor. (B, T_2, size)
|
|
v: Value tensor. (B, T_2, size)
|
|
Returns:
|
|
q: Transformed query tensor. (B, H, T_1, d_k)
|
|
k: Transformed key tensor. (B, H, T_2, d_k)
|
|
v: Transformed value tensor. (B, H, T_2, d_k)
|
|
"""
|
|
n_batch = query.size(0)
|
|
|
|
q = self.linear_q(query).view(n_batch, -1, self.num_heads, self.d_k).transpose(1, 2)
|
|
k = self.linear_k(key).view(n_batch, -1, self.num_heads, self.d_k).transpose(1, 2)
|
|
v = self.linear_v(value).view(n_batch, -1, self.num_heads, self.d_k).transpose(1, 2)
|
|
|
|
return q, k, v
|
|
|
|
def forward_attention(
|
|
self,
|
|
value: torch.Tensor,
|
|
scores: torch.Tensor,
|
|
mask: torch.Tensor,
|
|
chunk_mask: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
"""Compute attention context vector.
|
|
Args:
|
|
value: Transformed value. (B, H, T_2, d_k)
|
|
scores: Attention score. (B, H, T_1, T_2)
|
|
mask: Source mask. (B, T_2)
|
|
chunk_mask: Chunk mask. (T_1, T_1)
|
|
Returns:
|
|
attn_output: Transformed value weighted by attention score. (B, T_1, H * d_k)
|
|
"""
|
|
batch_size = scores.size(0)
|
|
mask = mask.unsqueeze(1).unsqueeze(2)
|
|
if chunk_mask is not None:
|
|
mask = chunk_mask.unsqueeze(0).unsqueeze(1) | mask
|
|
scores = scores.masked_fill(mask, float("-inf"))
|
|
self.attn = torch.softmax(scores, dim=-1).masked_fill(mask, 0.0)
|
|
|
|
attn_output = self.dropout(self.attn)
|
|
attn_output = torch.matmul(attn_output, value)
|
|
|
|
attn_output = self.linear_out(
|
|
attn_output.transpose(1, 2).contiguous().view(batch_size, -1, self.num_heads * self.d_k)
|
|
)
|
|
|
|
return attn_output
|
|
|
|
def forward(
|
|
self,
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
pos_enc: torch.Tensor,
|
|
mask: torch.Tensor,
|
|
chunk_mask: Optional[torch.Tensor] = None,
|
|
left_context: int = 0,
|
|
) -> torch.Tensor:
|
|
"""Compute scaled dot product attention with rel. positional encoding.
|
|
Args:
|
|
query: Query tensor. (B, T_1, size)
|
|
key: Key tensor. (B, T_2, size)
|
|
value: Value tensor. (B, T_2, size)
|
|
pos_enc: Positional embedding tensor. (B, 2 * T_1 - 1, size)
|
|
mask: Source mask. (B, T_2)
|
|
chunk_mask: Chunk mask. (T_1, T_1)
|
|
left_context: Number of frames in left context.
|
|
Returns:
|
|
: Output tensor. (B, T_1, H * d_k)
|
|
"""
|
|
q, k, v = self.forward_qkv(query, key, value)
|
|
scores = self.compute_att_score(q, k, pos_enc, left_context=left_context)
|
|
return self.forward_attention(v, scores, mask, chunk_mask=chunk_mask)
|