537 lines
18 KiB
Python
537 lines
18 KiB
Python
#!/usr/bin/env python3
|
|
# -*- encoding: utf-8 -*-
|
|
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
|
|
# MIT License (https://opensource.org/licenses/MIT)
|
|
|
|
import time
|
|
import torch
|
|
import logging
|
|
from contextlib import contextmanager
|
|
from typing import Dict, Optional, Tuple
|
|
from distutils.version import LooseVersion
|
|
|
|
from funasr.register import tables
|
|
from funasr.utils import postprocess_utils
|
|
from funasr.utils.datadir_writer import DatadirWriter
|
|
from funasr.train_utils.device_funcs import force_gatherable
|
|
from funasr.models.transformer.scorers.ctc import CTCPrefixScorer
|
|
from funasr.losses.label_smoothing_loss import LabelSmoothingLoss
|
|
from funasr.models.transformer.scorers.length_bonus import LengthBonus
|
|
from funasr.models.transformer.utils.nets_utils import get_transducer_task_io
|
|
from funasr.utils.load_utils import load_audio_text_image_video, extract_fbank
|
|
from funasr.models.transducer.beam_search_transducer import BeamSearchTransducer
|
|
|
|
|
|
if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
|
|
from torch.cuda.amp import autocast
|
|
else:
|
|
# Nothing to do if torch<1.6.0
|
|
@contextmanager
|
|
def autocast(enabled=True):
|
|
yield
|
|
|
|
|
|
@tables.register("model_classes", "Transducer")
|
|
class Transducer(torch.nn.Module):
|
|
def __init__(
|
|
self,
|
|
frontend: Optional[str] = None,
|
|
frontend_conf: Optional[Dict] = None,
|
|
specaug: Optional[str] = None,
|
|
specaug_conf: Optional[Dict] = None,
|
|
normalize: str = None,
|
|
normalize_conf: Optional[Dict] = None,
|
|
encoder: str = None,
|
|
encoder_conf: Optional[Dict] = None,
|
|
decoder: str = None,
|
|
decoder_conf: Optional[Dict] = None,
|
|
joint_network: str = None,
|
|
joint_network_conf: Optional[Dict] = None,
|
|
transducer_weight: float = 1.0,
|
|
fastemit_lambda: float = 0.0,
|
|
auxiliary_ctc_weight: float = 0.0,
|
|
auxiliary_ctc_dropout_rate: float = 0.0,
|
|
auxiliary_lm_loss_weight: float = 0.0,
|
|
auxiliary_lm_loss_smoothing: float = 0.0,
|
|
input_size: int = 80,
|
|
vocab_size: int = -1,
|
|
ignore_id: int = -1,
|
|
blank_id: int = 0,
|
|
sos: int = 1,
|
|
eos: int = 2,
|
|
lsm_weight: float = 0.0,
|
|
length_normalized_loss: bool = False,
|
|
# report_cer: bool = True,
|
|
# report_wer: bool = True,
|
|
# sym_space: str = "<space>",
|
|
# sym_blank: str = "<blank>",
|
|
# extract_feats_in_collect_stats: bool = True,
|
|
share_embedding: bool = False,
|
|
# preencoder: Optional[AbsPreEncoder] = None,
|
|
# postencoder: Optional[AbsPostEncoder] = None,
|
|
**kwargs,
|
|
):
|
|
|
|
super().__init__()
|
|
|
|
if specaug is not None:
|
|
specaug_class = tables.specaug_classes.get(specaug)
|
|
specaug = specaug_class(**specaug_conf)
|
|
if normalize is not None:
|
|
normalize_class = tables.normalize_classes.get(normalize)
|
|
normalize = normalize_class(**normalize_conf)
|
|
encoder_class = tables.encoder_classes.get(encoder)
|
|
encoder = encoder_class(input_size=input_size, **encoder_conf)
|
|
encoder_output_size = encoder.output_size()
|
|
|
|
decoder_class = tables.decoder_classes.get(decoder)
|
|
decoder = decoder_class(
|
|
vocab_size=vocab_size,
|
|
**decoder_conf,
|
|
)
|
|
decoder_output_size = decoder.output_size
|
|
|
|
joint_network_class = tables.joint_network_classes.get(joint_network)
|
|
joint_network = joint_network_class(
|
|
vocab_size,
|
|
encoder_output_size,
|
|
decoder_output_size,
|
|
**joint_network_conf,
|
|
)
|
|
|
|
self.criterion_transducer = None
|
|
self.error_calculator = None
|
|
|
|
self.use_auxiliary_ctc = auxiliary_ctc_weight > 0
|
|
self.use_auxiliary_lm_loss = auxiliary_lm_loss_weight > 0
|
|
|
|
if self.use_auxiliary_ctc:
|
|
self.ctc_lin = torch.nn.Linear(encoder.output_size(), vocab_size)
|
|
self.ctc_dropout_rate = auxiliary_ctc_dropout_rate
|
|
|
|
if self.use_auxiliary_lm_loss:
|
|
self.lm_lin = torch.nn.Linear(decoder.output_size, vocab_size)
|
|
self.lm_loss_smoothing = auxiliary_lm_loss_smoothing
|
|
|
|
self.transducer_weight = transducer_weight
|
|
self.fastemit_lambda = fastemit_lambda
|
|
|
|
self.auxiliary_ctc_weight = auxiliary_ctc_weight
|
|
self.auxiliary_lm_loss_weight = auxiliary_lm_loss_weight
|
|
self.blank_id = blank_id
|
|
self.sos = sos if sos is not None else vocab_size - 1
|
|
self.eos = eos if eos is not None else vocab_size - 1
|
|
self.vocab_size = vocab_size
|
|
self.ignore_id = ignore_id
|
|
self.frontend = frontend
|
|
self.specaug = specaug
|
|
self.normalize = normalize
|
|
self.encoder = encoder
|
|
self.decoder = decoder
|
|
self.joint_network = joint_network
|
|
|
|
self.criterion_att = LabelSmoothingLoss(
|
|
size=vocab_size,
|
|
padding_idx=ignore_id,
|
|
smoothing=lsm_weight,
|
|
normalize_length=length_normalized_loss,
|
|
)
|
|
|
|
self.length_normalized_loss = length_normalized_loss
|
|
self.beam_search = None
|
|
self.ctc = None
|
|
self.ctc_weight = 0.0
|
|
|
|
def forward(
|
|
self,
|
|
speech: torch.Tensor,
|
|
speech_lengths: torch.Tensor,
|
|
text: torch.Tensor,
|
|
text_lengths: torch.Tensor,
|
|
**kwargs,
|
|
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
|
|
"""Encoder + Decoder + Calc loss
|
|
Args:
|
|
speech: (Batch, Length, ...)
|
|
speech_lengths: (Batch, )
|
|
text: (Batch, Length)
|
|
text_lengths: (Batch,)
|
|
"""
|
|
if len(text_lengths.size()) > 1:
|
|
text_lengths = text_lengths[:, 0]
|
|
if len(speech_lengths.size()) > 1:
|
|
speech_lengths = speech_lengths[:, 0]
|
|
|
|
batch_size = speech.shape[0]
|
|
# 1. Encoder
|
|
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
|
|
if (
|
|
hasattr(self.encoder, "overlap_chunk_cls")
|
|
and self.encoder.overlap_chunk_cls is not None
|
|
):
|
|
encoder_out, encoder_out_lens = self.encoder.overlap_chunk_cls.remove_chunk(
|
|
encoder_out, encoder_out_lens, chunk_outs=None
|
|
)
|
|
# 2. Transducer-related I/O preparation
|
|
decoder_in, target, t_len, u_len = get_transducer_task_io(
|
|
text,
|
|
encoder_out_lens,
|
|
ignore_id=self.ignore_id,
|
|
)
|
|
|
|
# 3. Decoder
|
|
self.decoder.set_device(encoder_out.device)
|
|
decoder_out = self.decoder(decoder_in, u_len)
|
|
|
|
# 4. Joint Network
|
|
joint_out = self.joint_network(encoder_out.unsqueeze(2), decoder_out.unsqueeze(1))
|
|
|
|
# 5. Losses
|
|
loss_trans, cer_trans, wer_trans = self._calc_transducer_loss(
|
|
encoder_out,
|
|
joint_out,
|
|
target,
|
|
t_len,
|
|
u_len,
|
|
)
|
|
|
|
loss_ctc, loss_lm = 0.0, 0.0
|
|
|
|
if self.use_auxiliary_ctc:
|
|
loss_ctc = self._calc_ctc_loss(
|
|
encoder_out,
|
|
target,
|
|
t_len,
|
|
u_len,
|
|
)
|
|
|
|
if self.use_auxiliary_lm_loss:
|
|
loss_lm = self._calc_lm_loss(decoder_out, target)
|
|
|
|
loss = (
|
|
self.transducer_weight * loss_trans
|
|
+ self.auxiliary_ctc_weight * loss_ctc
|
|
+ self.auxiliary_lm_loss_weight * loss_lm
|
|
)
|
|
|
|
stats = dict(
|
|
loss=loss.detach(),
|
|
loss_transducer=loss_trans.detach(),
|
|
aux_ctc_loss=loss_ctc.detach() if loss_ctc > 0.0 else None,
|
|
aux_lm_loss=loss_lm.detach() if loss_lm > 0.0 else None,
|
|
cer_transducer=cer_trans,
|
|
wer_transducer=wer_trans,
|
|
)
|
|
|
|
# force_gatherable: to-device and to-tensor if scalar for DataParallel
|
|
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
|
|
|
|
return loss, stats, weight
|
|
|
|
def encode(
|
|
self,
|
|
speech: torch.Tensor,
|
|
speech_lengths: torch.Tensor,
|
|
**kwargs,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""Frontend + Encoder. Note that this method is used by asr_inference.py
|
|
Args:
|
|
speech: (Batch, Length, ...)
|
|
speech_lengths: (Batch, )
|
|
ind: int
|
|
"""
|
|
with autocast(False):
|
|
|
|
# Data augmentation
|
|
if self.specaug is not None and self.training:
|
|
speech, speech_lengths = self.specaug(speech, speech_lengths)
|
|
|
|
# Normalization for feature: e.g. Global-CMVN, Utterance-CMVN
|
|
if self.normalize is not None:
|
|
speech, speech_lengths = self.normalize(speech, speech_lengths)
|
|
|
|
# Forward encoder
|
|
# feats: (Batch, Length, Dim)
|
|
# -> encoder_out: (Batch, Length2, Dim2)
|
|
encoder_out, encoder_out_lens, _ = self.encoder(speech, speech_lengths)
|
|
intermediate_outs = None
|
|
if isinstance(encoder_out, tuple):
|
|
intermediate_outs = encoder_out[1]
|
|
encoder_out = encoder_out[0]
|
|
|
|
if intermediate_outs is not None:
|
|
return (encoder_out, intermediate_outs), encoder_out_lens
|
|
|
|
return encoder_out, encoder_out_lens
|
|
|
|
def _calc_transducer_loss(
|
|
self,
|
|
encoder_out: torch.Tensor,
|
|
joint_out: torch.Tensor,
|
|
target: torch.Tensor,
|
|
t_len: torch.Tensor,
|
|
u_len: torch.Tensor,
|
|
) -> Tuple[torch.Tensor, Optional[float], Optional[float]]:
|
|
"""Compute Transducer loss.
|
|
|
|
Args:
|
|
encoder_out: Encoder output sequences. (B, T, D_enc)
|
|
joint_out: Joint Network output sequences (B, T, U, D_joint)
|
|
target: Target label ID sequences. (B, L)
|
|
t_len: Encoder output sequences lengths. (B,)
|
|
u_len: Target label ID sequences lengths. (B,)
|
|
|
|
Return:
|
|
loss_transducer: Transducer loss value.
|
|
cer_transducer: Character error rate for Transducer.
|
|
wer_transducer: Word Error Rate for Transducer.
|
|
|
|
"""
|
|
if self.criterion_transducer is None:
|
|
try:
|
|
from warp_rnnt import rnnt_loss as RNNTLoss
|
|
|
|
self.criterion_transducer = RNNTLoss
|
|
|
|
except ImportError:
|
|
logging.error(
|
|
"warp-rnnt was not installed." "Please consult the installation documentation."
|
|
)
|
|
exit(1)
|
|
|
|
log_probs = torch.log_softmax(joint_out, dim=-1)
|
|
|
|
loss_transducer = self.criterion_transducer(
|
|
log_probs,
|
|
target,
|
|
t_len,
|
|
u_len,
|
|
reduction="mean",
|
|
blank=self.blank_id,
|
|
fastemit_lambda=self.fastemit_lambda,
|
|
gather=True,
|
|
)
|
|
|
|
if not self.training and (self.report_cer or self.report_wer):
|
|
if self.error_calculator is None:
|
|
from funasr.metrics import ErrorCalculatorTransducer as ErrorCalculator
|
|
|
|
self.error_calculator = ErrorCalculator(
|
|
self.decoder,
|
|
self.joint_network,
|
|
self.token_list,
|
|
self.sym_space,
|
|
self.sym_blank,
|
|
report_cer=self.report_cer,
|
|
report_wer=self.report_wer,
|
|
)
|
|
|
|
cer_transducer, wer_transducer = self.error_calculator(encoder_out, target, t_len)
|
|
|
|
return loss_transducer, cer_transducer, wer_transducer
|
|
|
|
return loss_transducer, None, None
|
|
|
|
def _calc_ctc_loss(
|
|
self,
|
|
encoder_out: torch.Tensor,
|
|
target: torch.Tensor,
|
|
t_len: torch.Tensor,
|
|
u_len: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
"""Compute CTC loss.
|
|
|
|
Args:
|
|
encoder_out: Encoder output sequences. (B, T, D_enc)
|
|
target: Target label ID sequences. (B, L)
|
|
t_len: Encoder output sequences lengths. (B,)
|
|
u_len: Target label ID sequences lengths. (B,)
|
|
|
|
Return:
|
|
loss_ctc: CTC loss value.
|
|
|
|
"""
|
|
ctc_in = self.ctc_lin(torch.nn.functional.dropout(encoder_out, p=self.ctc_dropout_rate))
|
|
ctc_in = torch.log_softmax(ctc_in.transpose(0, 1), dim=-1)
|
|
|
|
target_mask = target != 0
|
|
ctc_target = target[target_mask].cpu()
|
|
|
|
with torch.backends.cudnn.flags(deterministic=True):
|
|
loss_ctc = torch.nn.functional.ctc_loss(
|
|
ctc_in,
|
|
ctc_target,
|
|
t_len,
|
|
u_len,
|
|
zero_infinity=True,
|
|
reduction="sum",
|
|
)
|
|
loss_ctc /= target.size(0)
|
|
|
|
return loss_ctc
|
|
|
|
def _calc_lm_loss(
|
|
self,
|
|
decoder_out: torch.Tensor,
|
|
target: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
"""Compute LM loss.
|
|
|
|
Args:
|
|
decoder_out: Decoder output sequences. (B, U, D_dec)
|
|
target: Target label ID sequences. (B, L)
|
|
|
|
Return:
|
|
loss_lm: LM loss value.
|
|
|
|
"""
|
|
lm_loss_in = self.lm_lin(decoder_out[:, :-1, :]).view(-1, self.vocab_size)
|
|
lm_target = target.view(-1).type(torch.int64)
|
|
|
|
with torch.no_grad():
|
|
true_dist = lm_loss_in.clone()
|
|
true_dist.fill_(self.lm_loss_smoothing / (self.vocab_size - 1))
|
|
|
|
# Ignore blank ID (0)
|
|
ignore = lm_target == 0
|
|
lm_target = lm_target.masked_fill(ignore, 0)
|
|
|
|
true_dist.scatter_(1, lm_target.unsqueeze(1), (1 - self.lm_loss_smoothing))
|
|
|
|
loss_lm = torch.nn.functional.kl_div(
|
|
torch.log_softmax(lm_loss_in, dim=1),
|
|
true_dist,
|
|
reduction="none",
|
|
)
|
|
loss_lm = loss_lm.masked_fill(ignore.unsqueeze(1), 0).sum() / decoder_out.size(0)
|
|
|
|
return loss_lm
|
|
|
|
def init_beam_search(
|
|
self,
|
|
**kwargs,
|
|
):
|
|
|
|
# 1. Build ASR model
|
|
scorers = {}
|
|
|
|
if self.ctc != None:
|
|
ctc = CTCPrefixScorer(ctc=self.ctc, eos=self.eos)
|
|
scorers.update(ctc=ctc)
|
|
token_list = kwargs.get("token_list")
|
|
scorers.update(
|
|
length_bonus=LengthBonus(len(token_list)),
|
|
)
|
|
|
|
# 3. Build ngram model
|
|
# ngram is not supported now
|
|
ngram = None
|
|
scorers["ngram"] = ngram
|
|
|
|
beam_search = BeamSearchTransducer(
|
|
self.decoder,
|
|
self.joint_network,
|
|
kwargs.get("beam_size", 2),
|
|
nbest=1,
|
|
)
|
|
# beam_search.to(device=kwargs.get("device", "cpu"), dtype=getattr(torch, kwargs.get("dtype", "float32"))).eval()
|
|
# for scorer in scorers.values():
|
|
# if isinstance(scorer, torch.nn.Module):
|
|
# scorer.to(device=kwargs.get("device", "cpu"), dtype=getattr(torch, kwargs.get("dtype", "float32"))).eval()
|
|
self.beam_search = beam_search
|
|
|
|
def inference(
|
|
self,
|
|
data_in: list,
|
|
data_lengths: list = None,
|
|
key: list = None,
|
|
tokenizer=None,
|
|
**kwargs,
|
|
):
|
|
|
|
if kwargs.get("batch_size", 1) > 1:
|
|
raise NotImplementedError("batch decoding is not implemented")
|
|
|
|
# init beamsearch
|
|
is_use_ctc = kwargs.get("decoding_ctc_weight", 0.0) > 0.00001 and self.ctc != None
|
|
is_use_lm = (
|
|
kwargs.get("lm_weight", 0.0) > 0.00001 and kwargs.get("lm_file", None) is not None
|
|
)
|
|
# if self.beam_search is None and (is_use_lm or is_use_ctc):
|
|
logging.info("enable beam_search")
|
|
self.init_beam_search(**kwargs)
|
|
self.nbest = kwargs.get("nbest", 1)
|
|
|
|
meta_data = {}
|
|
# extract fbank feats
|
|
time1 = time.perf_counter()
|
|
audio_sample_list = load_audio_text_image_video(
|
|
data_in, fs=self.frontend.fs, audio_fs=kwargs.get("fs", 16000)
|
|
)
|
|
time2 = time.perf_counter()
|
|
meta_data["load_data"] = f"{time2 - time1:0.3f}"
|
|
speech, speech_lengths = extract_fbank(
|
|
audio_sample_list, data_type=kwargs.get("data_type", "sound"), frontend=self.frontend
|
|
)
|
|
time3 = time.perf_counter()
|
|
meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
|
|
meta_data["batch_data_time"] = (
|
|
speech_lengths.sum().item() * self.frontend.frame_shift * self.frontend.lfr_n / 1000
|
|
)
|
|
|
|
speech = speech.to(device=kwargs["device"])
|
|
speech_lengths = speech_lengths.to(device=kwargs["device"])
|
|
|
|
# Encoder
|
|
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
|
|
if isinstance(encoder_out, tuple):
|
|
encoder_out = encoder_out[0]
|
|
|
|
# c. Passed the encoder result and the beam search
|
|
nbest_hyps = self.beam_search(encoder_out[0], is_final=True)
|
|
nbest_hyps = nbest_hyps[: self.nbest]
|
|
|
|
results = []
|
|
b, n, d = encoder_out.size()
|
|
for i in range(b):
|
|
|
|
for nbest_idx, hyp in enumerate(nbest_hyps):
|
|
ibest_writer = None
|
|
if kwargs.get("output_dir") is not None:
|
|
if not hasattr(self, "writer"):
|
|
self.writer = DatadirWriter(kwargs.get("output_dir"))
|
|
ibest_writer = self.writer[f"{nbest_idx + 1}best_recog"]
|
|
# remove sos/eos and get results
|
|
last_pos = -1
|
|
if isinstance(hyp.yseq, list):
|
|
token_int = hyp.yseq # [1:last_pos]
|
|
else:
|
|
token_int = hyp.yseq # [1:last_pos].tolist()
|
|
|
|
# remove blank symbol id, which is assumed to be 0
|
|
token_int = list(
|
|
filter(
|
|
lambda x: x != self.eos and x != self.sos and x != self.blank_id, token_int
|
|
)
|
|
)
|
|
|
|
# Change integer-ids to tokens
|
|
token = tokenizer.ids2tokens(token_int)
|
|
text = tokenizer.tokens2text(token)
|
|
|
|
text_postprocessed, _ = postprocess_utils.sentence_postprocess(token)
|
|
result_i = {
|
|
"key": key[i],
|
|
"token": token,
|
|
"text": text,
|
|
"text_postprocessed": text_postprocessed,
|
|
}
|
|
results.append(result_i)
|
|
|
|
if ibest_writer is not None:
|
|
ibest_writer["token"][key[i]] = " ".join(token)
|
|
ibest_writer["text"][key[i]] = text
|
|
ibest_writer["text_postprocessed"][key[i]] = text_postprocessed
|
|
|
|
return results, meta_data
|