337 lines
10 KiB
Python
337 lines
10 KiB
Python
import math
|
||
import torch
|
||
from typing import Sequence
|
||
from typing import Union
|
||
|
||
|
||
def mask_along_axis(
|
||
spec: torch.Tensor,
|
||
spec_lengths: torch.Tensor,
|
||
mask_width_range: Sequence[int] = (0, 30),
|
||
dim: int = 1,
|
||
num_mask: int = 2,
|
||
replace_with_zero: bool = True,
|
||
):
|
||
"""Apply mask along the specified direction.
|
||
|
||
Args:
|
||
spec: (Batch, Length, Freq)
|
||
spec_lengths: (Length): Not using lengths in this implementation
|
||
mask_width_range: Select the width randomly between this range
|
||
"""
|
||
|
||
org_size = spec.size()
|
||
if spec.dim() == 4:
|
||
# spec: (Batch, Channel, Length, Freq) -> (Batch * Channel, Length, Freq)
|
||
spec = spec.view(-1, spec.size(2), spec.size(3))
|
||
|
||
B = spec.shape[0]
|
||
# D = Length or Freq
|
||
D = spec.shape[dim]
|
||
# mask_length: (B, num_mask, 1)
|
||
mask_length = torch.randint(
|
||
mask_width_range[0],
|
||
mask_width_range[1],
|
||
(B, num_mask),
|
||
device=spec.device,
|
||
).unsqueeze(2)
|
||
|
||
# mask_pos: (B, num_mask, 1)
|
||
mask_pos = torch.randint(
|
||
0, max(1, D - mask_length.max()), (B, num_mask), device=spec.device
|
||
).unsqueeze(2)
|
||
|
||
# aran: (1, 1, D)
|
||
aran = torch.arange(D, device=spec.device)[None, None, :]
|
||
# mask: (Batch, num_mask, D)
|
||
mask = (mask_pos <= aran) * (aran < (mask_pos + mask_length))
|
||
# Multiply masks: (Batch, num_mask, D) -> (Batch, D)
|
||
mask = mask.any(dim=1)
|
||
if dim == 1:
|
||
# mask: (Batch, Length, 1)
|
||
mask = mask.unsqueeze(2)
|
||
elif dim == 2:
|
||
# mask: (Batch, 1, Freq)
|
||
mask = mask.unsqueeze(1)
|
||
|
||
if replace_with_zero:
|
||
value = 0.0
|
||
else:
|
||
value = spec.mean()
|
||
|
||
if spec.requires_grad:
|
||
spec = spec.masked_fill(mask, value)
|
||
else:
|
||
spec = spec.masked_fill_(mask, value)
|
||
spec = spec.view(*org_size)
|
||
return spec, spec_lengths
|
||
|
||
|
||
def mask_along_axis_lfr(
|
||
spec: torch.Tensor,
|
||
spec_lengths: torch.Tensor,
|
||
mask_width_range: Sequence[int] = (0, 30),
|
||
dim: int = 1,
|
||
num_mask: int = 2,
|
||
replace_with_zero: bool = True,
|
||
lfr_rate: int = 1,
|
||
):
|
||
"""Apply mask along the specified direction.
|
||
|
||
Args:
|
||
spec: (Batch, Length, Freq)
|
||
spec_lengths: (Length): Not using lengths in this implementation
|
||
mask_width_range: Select the width randomly between this range
|
||
lfr_rate:low frame rate
|
||
"""
|
||
|
||
org_size = spec.size()
|
||
if spec.dim() == 4:
|
||
# spec: (Batch, Channel, Length, Freq) -> (Batch * Channel, Length, Freq)
|
||
spec = spec.view(-1, spec.size(2), spec.size(3))
|
||
|
||
B = spec.shape[0]
|
||
# D = Length or Freq
|
||
D = spec.shape[dim] // lfr_rate
|
||
# mask_length: (B, num_mask, 1)
|
||
mask_length = torch.randint(
|
||
mask_width_range[0],
|
||
mask_width_range[1],
|
||
(B, num_mask),
|
||
device=spec.device,
|
||
).unsqueeze(2)
|
||
if lfr_rate > 1:
|
||
mask_length = mask_length.repeat(1, lfr_rate, 1)
|
||
# mask_pos: (B, num_mask, 1)
|
||
mask_pos = torch.randint(
|
||
0, max(1, D - mask_length.max()), (B, num_mask), device=spec.device
|
||
).unsqueeze(2)
|
||
if lfr_rate > 1:
|
||
mask_pos_raw = mask_pos.clone()
|
||
mask_pos = torch.zeros((B, 0, 1), device=spec.device, dtype=torch.int32)
|
||
for i in range(lfr_rate):
|
||
mask_pos_i = mask_pos_raw + D * i
|
||
mask_pos = torch.cat((mask_pos, mask_pos_i), dim=1)
|
||
# aran: (1, 1, D)
|
||
D = spec.shape[dim]
|
||
aran = torch.arange(D, device=spec.device)[None, None, :]
|
||
# mask: (Batch, num_mask, D)
|
||
mask = (mask_pos <= aran) * (aran < (mask_pos + mask_length))
|
||
# Multiply masks: (Batch, num_mask, D) -> (Batch, D)
|
||
mask = mask.any(dim=1)
|
||
if dim == 1:
|
||
# mask: (Batch, Length, 1)
|
||
mask = mask.unsqueeze(2)
|
||
elif dim == 2:
|
||
# mask: (Batch, 1, Freq)
|
||
mask = mask.unsqueeze(1)
|
||
|
||
if replace_with_zero:
|
||
value = 0.0
|
||
else:
|
||
value = spec.mean()
|
||
|
||
if spec.requires_grad:
|
||
spec = spec.masked_fill(mask, value)
|
||
else:
|
||
spec = spec.masked_fill_(mask, value)
|
||
spec = spec.view(*org_size)
|
||
return spec, spec_lengths
|
||
|
||
|
||
class MaskAlongAxis(torch.nn.Module):
|
||
def __init__(
|
||
self,
|
||
mask_width_range: Union[int, Sequence[int]] = (0, 30),
|
||
num_mask: int = 2,
|
||
dim: Union[int, str] = "time",
|
||
replace_with_zero: bool = True,
|
||
):
|
||
if isinstance(mask_width_range, int):
|
||
mask_width_range = (0, mask_width_range)
|
||
if len(mask_width_range) != 2:
|
||
raise TypeError(
|
||
f"mask_width_range must be a tuple of int and int values: " f"{mask_width_range}",
|
||
)
|
||
|
||
assert mask_width_range[1] > mask_width_range[0]
|
||
if isinstance(dim, str):
|
||
if dim == "time":
|
||
dim = 1
|
||
elif dim == "freq":
|
||
dim = 2
|
||
else:
|
||
raise ValueError("dim must be int, 'time' or 'freq'")
|
||
if dim == 1:
|
||
self.mask_axis = "time"
|
||
elif dim == 2:
|
||
self.mask_axis = "freq"
|
||
else:
|
||
self.mask_axis = "unknown"
|
||
|
||
super().__init__()
|
||
self.mask_width_range = mask_width_range
|
||
self.num_mask = num_mask
|
||
self.dim = dim
|
||
self.replace_with_zero = replace_with_zero
|
||
|
||
def extra_repr(self):
|
||
return (
|
||
f"mask_width_range={self.mask_width_range}, "
|
||
f"num_mask={self.num_mask}, axis={self.mask_axis}"
|
||
)
|
||
|
||
def forward(self, spec: torch.Tensor, spec_lengths: torch.Tensor = None):
|
||
"""Forward function.
|
||
|
||
Args:
|
||
spec: (Batch, Length, Freq)
|
||
"""
|
||
|
||
return mask_along_axis(
|
||
spec,
|
||
spec_lengths,
|
||
mask_width_range=self.mask_width_range,
|
||
dim=self.dim,
|
||
num_mask=self.num_mask,
|
||
replace_with_zero=self.replace_with_zero,
|
||
)
|
||
|
||
|
||
class MaskAlongAxisVariableMaxWidth(torch.nn.Module):
|
||
"""Mask input spec along a specified axis with variable maximum width.
|
||
|
||
Formula:
|
||
max_width = max_width_ratio * seq_len
|
||
"""
|
||
|
||
def __init__(
|
||
self,
|
||
mask_width_ratio_range: Union[float, Sequence[float]] = (0.0, 0.05),
|
||
num_mask: int = 2,
|
||
dim: Union[int, str] = "time",
|
||
replace_with_zero: bool = True,
|
||
):
|
||
if isinstance(mask_width_ratio_range, float):
|
||
mask_width_ratio_range = (0.0, mask_width_ratio_range)
|
||
if len(mask_width_ratio_range) != 2:
|
||
raise TypeError(
|
||
f"mask_width_ratio_range must be a tuple of float and float values: "
|
||
f"{mask_width_ratio_range}",
|
||
)
|
||
|
||
assert mask_width_ratio_range[1] > mask_width_ratio_range[0]
|
||
if isinstance(dim, str):
|
||
if dim == "time":
|
||
dim = 1
|
||
elif dim == "freq":
|
||
dim = 2
|
||
else:
|
||
raise ValueError("dim must be int, 'time' or 'freq'")
|
||
if dim == 1:
|
||
self.mask_axis = "time"
|
||
elif dim == 2:
|
||
self.mask_axis = "freq"
|
||
else:
|
||
self.mask_axis = "unknown"
|
||
|
||
super().__init__()
|
||
self.mask_width_ratio_range = mask_width_ratio_range
|
||
self.num_mask = num_mask
|
||
self.dim = dim
|
||
self.replace_with_zero = replace_with_zero
|
||
|
||
def extra_repr(self):
|
||
return (
|
||
f"mask_width_ratio_range={self.mask_width_ratio_range}, "
|
||
f"num_mask={self.num_mask}, axis={self.mask_axis}"
|
||
)
|
||
|
||
def forward(self, spec: torch.Tensor, spec_lengths: torch.Tensor = None):
|
||
"""Forward function.
|
||
|
||
Args:
|
||
spec: (Batch, Length, Freq)
|
||
"""
|
||
|
||
max_seq_len = spec.shape[self.dim]
|
||
min_mask_width = math.floor(max_seq_len * self.mask_width_ratio_range[0])
|
||
min_mask_width = max([0, min_mask_width])
|
||
max_mask_width = math.floor(max_seq_len * self.mask_width_ratio_range[1])
|
||
max_mask_width = min([max_seq_len, max_mask_width])
|
||
|
||
if max_mask_width > min_mask_width:
|
||
return mask_along_axis(
|
||
spec,
|
||
spec_lengths,
|
||
mask_width_range=(min_mask_width, max_mask_width),
|
||
dim=self.dim,
|
||
num_mask=self.num_mask,
|
||
replace_with_zero=self.replace_with_zero,
|
||
)
|
||
return spec, spec_lengths
|
||
|
||
|
||
class MaskAlongAxisLFR(torch.nn.Module):
|
||
def __init__(
|
||
self,
|
||
mask_width_range: Union[int, Sequence[int]] = (0, 30),
|
||
num_mask: int = 2,
|
||
dim: Union[int, str] = "time",
|
||
replace_with_zero: bool = True,
|
||
lfr_rate: int = 1,
|
||
):
|
||
if isinstance(mask_width_range, int):
|
||
mask_width_range = (0, mask_width_range)
|
||
if len(mask_width_range) != 2:
|
||
raise TypeError(
|
||
f"mask_width_range must be a tuple of int and int values: " f"{mask_width_range}",
|
||
)
|
||
|
||
assert mask_width_range[1] > mask_width_range[0]
|
||
if isinstance(dim, str):
|
||
if dim == "time":
|
||
dim = 1
|
||
lfr_rate = 1
|
||
elif dim == "freq":
|
||
dim = 2
|
||
else:
|
||
raise ValueError("dim must be int, 'time' or 'freq'")
|
||
if dim == 1:
|
||
self.mask_axis = "time"
|
||
lfr_rate = 1
|
||
elif dim == 2:
|
||
self.mask_axis = "freq"
|
||
else:
|
||
self.mask_axis = "unknown"
|
||
|
||
super().__init__()
|
||
self.mask_width_range = mask_width_range
|
||
self.num_mask = num_mask
|
||
self.dim = dim
|
||
self.replace_with_zero = replace_with_zero
|
||
self.lfr_rate = lfr_rate
|
||
|
||
def extra_repr(self):
|
||
return (
|
||
f"mask_width_range={self.mask_width_range}, "
|
||
f"num_mask={self.num_mask}, axis={self.mask_axis}"
|
||
)
|
||
|
||
def forward(self, spec: torch.Tensor, spec_lengths: torch.Tensor = None):
|
||
"""Forward function.
|
||
|
||
Args:
|
||
spec: (Batch, Length, Freq)
|
||
"""
|
||
|
||
return mask_along_axis_lfr(
|
||
spec,
|
||
spec_lengths,
|
||
mask_width_range=self.mask_width_range,
|
||
dim=self.dim,
|
||
num_mask=self.num_mask,
|
||
replace_with_zero=self.replace_with_zero,
|
||
lfr_rate=self.lfr_rate,
|
||
)
|