605 lines
21 KiB
Python
605 lines
21 KiB
Python
#!/usr/bin/env python3
|
|
# -*- encoding: utf-8 -*-
|
|
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
|
|
# MIT License (https://opensource.org/licenses/MIT)
|
|
|
|
from typing import List
|
|
from typing import Optional
|
|
from typing import Sequence
|
|
from typing import Tuple
|
|
from typing import Union
|
|
import logging
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
import numpy as np
|
|
from funasr.train_utils.device_funcs import to_device
|
|
from funasr.models.transformer.utils.nets_utils import make_pad_mask
|
|
from funasr.models.sanm.attention import MultiHeadedAttention, MultiHeadedAttentionSANM
|
|
from funasr.models.transformer.embedding import (
|
|
SinusoidalPositionEncoder,
|
|
StreamSinusoidalPositionEncoder,
|
|
)
|
|
from funasr.models.transformer.layer_norm import LayerNorm
|
|
from funasr.models.transformer.utils.multi_layer_conv import Conv1dLinear
|
|
from funasr.models.transformer.utils.multi_layer_conv import MultiLayeredConv1d
|
|
from funasr.models.transformer.positionwise_feed_forward import (
|
|
PositionwiseFeedForward, # noqa: H301
|
|
)
|
|
from funasr.models.transformer.utils.repeat import repeat
|
|
from funasr.models.transformer.utils.subsampling import Conv2dSubsampling
|
|
from funasr.models.transformer.utils.subsampling import Conv2dSubsampling2
|
|
from funasr.models.transformer.utils.subsampling import Conv2dSubsampling6
|
|
from funasr.models.transformer.utils.subsampling import Conv2dSubsampling8
|
|
from funasr.models.transformer.utils.subsampling import TooShortUttError
|
|
from funasr.models.transformer.utils.subsampling import check_short_utt
|
|
|
|
|
|
from funasr.models.ctc.ctc import CTC
|
|
|
|
from funasr.register import tables
|
|
|
|
|
|
class EncoderLayerSANM(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_size,
|
|
size,
|
|
self_attn,
|
|
feed_forward,
|
|
dropout_rate,
|
|
normalize_before=True,
|
|
concat_after=False,
|
|
stochastic_depth_rate=0.0,
|
|
):
|
|
"""Construct an EncoderLayer object."""
|
|
super(EncoderLayerSANM, self).__init__()
|
|
self.self_attn = self_attn
|
|
self.feed_forward = feed_forward
|
|
self.norm1 = LayerNorm(in_size)
|
|
self.norm2 = LayerNorm(size)
|
|
self.dropout = nn.Dropout(dropout_rate)
|
|
self.in_size = in_size
|
|
self.size = size
|
|
self.normalize_before = normalize_before
|
|
self.concat_after = concat_after
|
|
if self.concat_after:
|
|
self.concat_linear = nn.Linear(size + size, size)
|
|
self.stochastic_depth_rate = stochastic_depth_rate
|
|
self.dropout_rate = dropout_rate
|
|
|
|
def forward(self, x, mask, cache=None, mask_shfit_chunk=None, mask_att_chunk_encoder=None):
|
|
"""Compute encoded features.
|
|
|
|
Args:
|
|
x_input (torch.Tensor): Input tensor (#batch, time, size).
|
|
mask (torch.Tensor): Mask tensor for the input (#batch, time).
|
|
cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size).
|
|
|
|
Returns:
|
|
torch.Tensor: Output tensor (#batch, time, size).
|
|
torch.Tensor: Mask tensor (#batch, time).
|
|
|
|
"""
|
|
skip_layer = False
|
|
# with stochastic depth, residual connection `x + f(x)` becomes
|
|
# `x <- x + 1 / (1 - p) * f(x)` at training time.
|
|
stoch_layer_coeff = 1.0
|
|
if self.training and self.stochastic_depth_rate > 0:
|
|
skip_layer = torch.rand(1).item() < self.stochastic_depth_rate
|
|
stoch_layer_coeff = 1.0 / (1 - self.stochastic_depth_rate)
|
|
|
|
if skip_layer:
|
|
if cache is not None:
|
|
x = torch.cat([cache, x], dim=1)
|
|
return x, mask
|
|
|
|
residual = x
|
|
if self.normalize_before:
|
|
x = self.norm1(x)
|
|
|
|
if self.concat_after:
|
|
x_concat = torch.cat(
|
|
(
|
|
x,
|
|
self.self_attn(
|
|
x,
|
|
mask,
|
|
mask_shfit_chunk=mask_shfit_chunk,
|
|
mask_att_chunk_encoder=mask_att_chunk_encoder,
|
|
),
|
|
),
|
|
dim=-1,
|
|
)
|
|
if self.in_size == self.size:
|
|
x = residual + stoch_layer_coeff * self.concat_linear(x_concat)
|
|
else:
|
|
x = stoch_layer_coeff * self.concat_linear(x_concat)
|
|
else:
|
|
if self.in_size == self.size:
|
|
x = residual + stoch_layer_coeff * self.dropout(
|
|
self.self_attn(
|
|
x,
|
|
mask,
|
|
mask_shfit_chunk=mask_shfit_chunk,
|
|
mask_att_chunk_encoder=mask_att_chunk_encoder,
|
|
)
|
|
)
|
|
else:
|
|
x = stoch_layer_coeff * self.dropout(
|
|
self.self_attn(
|
|
x,
|
|
mask,
|
|
mask_shfit_chunk=mask_shfit_chunk,
|
|
mask_att_chunk_encoder=mask_att_chunk_encoder,
|
|
)
|
|
)
|
|
if not self.normalize_before:
|
|
x = self.norm1(x)
|
|
|
|
residual = x
|
|
if self.normalize_before:
|
|
x = self.norm2(x)
|
|
x = residual + stoch_layer_coeff * self.dropout(self.feed_forward(x))
|
|
if not self.normalize_before:
|
|
x = self.norm2(x)
|
|
|
|
return x, mask, cache, mask_shfit_chunk, mask_att_chunk_encoder
|
|
|
|
def forward_chunk(self, x, cache=None, chunk_size=None, look_back=0):
|
|
"""Compute encoded features.
|
|
|
|
Args:
|
|
x_input (torch.Tensor): Input tensor (#batch, time, size).
|
|
mask (torch.Tensor): Mask tensor for the input (#batch, time).
|
|
cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size).
|
|
|
|
Returns:
|
|
torch.Tensor: Output tensor (#batch, time, size).
|
|
torch.Tensor: Mask tensor (#batch, time).
|
|
|
|
"""
|
|
|
|
residual = x
|
|
if self.normalize_before:
|
|
x = self.norm1(x)
|
|
|
|
if self.in_size == self.size:
|
|
attn, cache = self.self_attn.forward_chunk(x, cache, chunk_size, look_back)
|
|
x = residual + attn
|
|
else:
|
|
x, cache = self.self_attn.forward_chunk(x, cache, chunk_size, look_back)
|
|
|
|
if not self.normalize_before:
|
|
x = self.norm1(x)
|
|
|
|
residual = x
|
|
if self.normalize_before:
|
|
x = self.norm2(x)
|
|
x = residual + self.feed_forward(x)
|
|
if not self.normalize_before:
|
|
x = self.norm2(x)
|
|
|
|
return x, cache
|
|
|
|
|
|
@tables.register("encoder_classes", "SANMEncoder")
|
|
class SANMEncoder(nn.Module):
|
|
"""
|
|
Author: Zhifu Gao, Shiliang Zhang, Ming Lei, Ian McLoughlin
|
|
San-m: Memory equipped self-attention for end-to-end speech recognition
|
|
https://arxiv.org/abs/2006.01713
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
input_size: int,
|
|
output_size: int = 256,
|
|
attention_heads: int = 4,
|
|
linear_units: int = 2048,
|
|
num_blocks: int = 6,
|
|
dropout_rate: float = 0.1,
|
|
positional_dropout_rate: float = 0.1,
|
|
attention_dropout_rate: float = 0.0,
|
|
input_layer: Optional[str] = "conv2d",
|
|
pos_enc_class=SinusoidalPositionEncoder,
|
|
normalize_before: bool = True,
|
|
concat_after: bool = False,
|
|
positionwise_layer_type: str = "linear",
|
|
positionwise_conv_kernel_size: int = 1,
|
|
padding_idx: int = -1,
|
|
interctc_layer_idx: List[int] = [],
|
|
interctc_use_conditioning: bool = False,
|
|
kernel_size: int = 11,
|
|
sanm_shfit: int = 0,
|
|
lora_list: List[str] = None,
|
|
lora_rank: int = 8,
|
|
lora_alpha: int = 16,
|
|
lora_dropout: float = 0.1,
|
|
selfattention_layer_type: str = "sanm",
|
|
tf2torch_tensor_name_prefix_torch: str = "encoder",
|
|
tf2torch_tensor_name_prefix_tf: str = "seq2seq/encoder",
|
|
):
|
|
super().__init__()
|
|
self._output_size = output_size
|
|
|
|
if input_layer == "linear":
|
|
self.embed = torch.nn.Sequential(
|
|
torch.nn.Linear(input_size, output_size),
|
|
torch.nn.LayerNorm(output_size),
|
|
torch.nn.Dropout(dropout_rate),
|
|
torch.nn.ReLU(),
|
|
pos_enc_class(output_size, positional_dropout_rate),
|
|
)
|
|
elif input_layer == "conv2d":
|
|
self.embed = Conv2dSubsampling(input_size, output_size, dropout_rate)
|
|
elif input_layer == "conv2d2":
|
|
self.embed = Conv2dSubsampling2(input_size, output_size, dropout_rate)
|
|
elif input_layer == "conv2d6":
|
|
self.embed = Conv2dSubsampling6(input_size, output_size, dropout_rate)
|
|
elif input_layer == "conv2d8":
|
|
self.embed = Conv2dSubsampling8(input_size, output_size, dropout_rate)
|
|
elif input_layer == "embed":
|
|
self.embed = torch.nn.Sequential(
|
|
torch.nn.Embedding(input_size, output_size, padding_idx=padding_idx),
|
|
SinusoidalPositionEncoder(),
|
|
)
|
|
elif input_layer is None:
|
|
if input_size == output_size:
|
|
self.embed = None
|
|
else:
|
|
self.embed = torch.nn.Linear(input_size, output_size)
|
|
elif input_layer == "pe":
|
|
self.embed = SinusoidalPositionEncoder()
|
|
elif input_layer == "pe_online":
|
|
self.embed = StreamSinusoidalPositionEncoder()
|
|
else:
|
|
raise ValueError("unknown input_layer: " + input_layer)
|
|
self.normalize_before = normalize_before
|
|
if positionwise_layer_type == "linear":
|
|
positionwise_layer = PositionwiseFeedForward
|
|
positionwise_layer_args = (
|
|
output_size,
|
|
linear_units,
|
|
dropout_rate,
|
|
)
|
|
elif positionwise_layer_type == "conv1d":
|
|
positionwise_layer = MultiLayeredConv1d
|
|
positionwise_layer_args = (
|
|
output_size,
|
|
linear_units,
|
|
positionwise_conv_kernel_size,
|
|
dropout_rate,
|
|
)
|
|
elif positionwise_layer_type == "conv1d-linear":
|
|
positionwise_layer = Conv1dLinear
|
|
positionwise_layer_args = (
|
|
output_size,
|
|
linear_units,
|
|
positionwise_conv_kernel_size,
|
|
dropout_rate,
|
|
)
|
|
else:
|
|
raise NotImplementedError("Support only linear or conv1d.")
|
|
|
|
if selfattention_layer_type == "selfattn":
|
|
encoder_selfattn_layer = MultiHeadedAttention
|
|
encoder_selfattn_layer_args = (
|
|
attention_heads,
|
|
output_size,
|
|
attention_dropout_rate,
|
|
)
|
|
|
|
elif selfattention_layer_type == "sanm":
|
|
encoder_selfattn_layer = MultiHeadedAttentionSANM
|
|
encoder_selfattn_layer_args0 = (
|
|
attention_heads,
|
|
input_size,
|
|
output_size,
|
|
attention_dropout_rate,
|
|
kernel_size,
|
|
sanm_shfit,
|
|
lora_list,
|
|
lora_rank,
|
|
lora_alpha,
|
|
lora_dropout,
|
|
)
|
|
|
|
encoder_selfattn_layer_args = (
|
|
attention_heads,
|
|
output_size,
|
|
output_size,
|
|
attention_dropout_rate,
|
|
kernel_size,
|
|
sanm_shfit,
|
|
lora_list,
|
|
lora_rank,
|
|
lora_alpha,
|
|
lora_dropout,
|
|
)
|
|
self.encoders0 = repeat(
|
|
1,
|
|
lambda lnum: EncoderLayerSANM(
|
|
input_size,
|
|
output_size,
|
|
encoder_selfattn_layer(*encoder_selfattn_layer_args0),
|
|
positionwise_layer(*positionwise_layer_args),
|
|
dropout_rate,
|
|
normalize_before,
|
|
concat_after,
|
|
),
|
|
)
|
|
|
|
self.encoders = repeat(
|
|
num_blocks - 1,
|
|
lambda lnum: EncoderLayerSANM(
|
|
output_size,
|
|
output_size,
|
|
encoder_selfattn_layer(*encoder_selfattn_layer_args),
|
|
positionwise_layer(*positionwise_layer_args),
|
|
dropout_rate,
|
|
normalize_before,
|
|
concat_after,
|
|
),
|
|
)
|
|
if self.normalize_before:
|
|
self.after_norm = LayerNorm(output_size)
|
|
|
|
self.interctc_layer_idx = interctc_layer_idx
|
|
if len(interctc_layer_idx) > 0:
|
|
assert 0 < min(interctc_layer_idx) and max(interctc_layer_idx) < num_blocks
|
|
self.interctc_use_conditioning = interctc_use_conditioning
|
|
self.conditioning_layer = None
|
|
self.dropout = nn.Dropout(dropout_rate)
|
|
self.tf2torch_tensor_name_prefix_torch = tf2torch_tensor_name_prefix_torch
|
|
self.tf2torch_tensor_name_prefix_tf = tf2torch_tensor_name_prefix_tf
|
|
|
|
def output_size(self) -> int:
|
|
return self._output_size
|
|
|
|
def forward(
|
|
self,
|
|
xs_pad: torch.Tensor,
|
|
ilens: torch.Tensor,
|
|
prev_states: torch.Tensor = None,
|
|
ctc: CTC = None,
|
|
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
|
|
"""Embed positions in tensor.
|
|
|
|
Args:
|
|
xs_pad: input tensor (B, L, D)
|
|
ilens: input length (B)
|
|
prev_states: Not to be used now.
|
|
Returns:
|
|
position embedded tensor and mask
|
|
"""
|
|
masks = (~make_pad_mask(ilens)[:, None, :]).to(xs_pad.device)
|
|
xs_pad = xs_pad * self.output_size() ** 0.5
|
|
if self.embed is None:
|
|
xs_pad = xs_pad
|
|
elif (
|
|
isinstance(self.embed, Conv2dSubsampling)
|
|
or isinstance(self.embed, Conv2dSubsampling2)
|
|
or isinstance(self.embed, Conv2dSubsampling6)
|
|
or isinstance(self.embed, Conv2dSubsampling8)
|
|
):
|
|
short_status, limit_size = check_short_utt(self.embed, xs_pad.size(1))
|
|
if short_status:
|
|
raise TooShortUttError(
|
|
f"has {xs_pad.size(1)} frames and is too short for subsampling "
|
|
+ f"(it needs more than {limit_size} frames), return empty results",
|
|
xs_pad.size(1),
|
|
limit_size,
|
|
)
|
|
xs_pad, masks = self.embed(xs_pad, masks)
|
|
else:
|
|
xs_pad = self.embed(xs_pad)
|
|
|
|
# xs_pad = self.dropout(xs_pad)
|
|
encoder_outs = self.encoders0(xs_pad, masks)
|
|
xs_pad, masks = encoder_outs[0], encoder_outs[1]
|
|
intermediate_outs = []
|
|
if len(self.interctc_layer_idx) == 0:
|
|
encoder_outs = self.encoders(xs_pad, masks)
|
|
xs_pad, masks = encoder_outs[0], encoder_outs[1]
|
|
else:
|
|
for layer_idx, encoder_layer in enumerate(self.encoders):
|
|
encoder_outs = encoder_layer(xs_pad, masks)
|
|
xs_pad, masks = encoder_outs[0], encoder_outs[1]
|
|
|
|
if layer_idx + 1 in self.interctc_layer_idx:
|
|
encoder_out = xs_pad
|
|
|
|
# intermediate outputs are also normalized
|
|
if self.normalize_before:
|
|
encoder_out = self.after_norm(encoder_out)
|
|
|
|
intermediate_outs.append((layer_idx + 1, encoder_out))
|
|
|
|
if self.interctc_use_conditioning:
|
|
ctc_out = ctc.softmax(encoder_out)
|
|
xs_pad = xs_pad + self.conditioning_layer(ctc_out)
|
|
|
|
if self.normalize_before:
|
|
xs_pad = self.after_norm(xs_pad)
|
|
|
|
olens = masks.squeeze(1).sum(1)
|
|
if len(intermediate_outs) > 0:
|
|
return (xs_pad, intermediate_outs), olens, None
|
|
return xs_pad, olens, None
|
|
|
|
def _add_overlap_chunk(self, feats: np.ndarray, cache: dict = {}):
|
|
if len(cache) == 0:
|
|
return feats
|
|
cache["feats"] = to_device(cache["feats"], device=feats.device)
|
|
overlap_feats = torch.cat((cache["feats"], feats), dim=1)
|
|
cache["feats"] = overlap_feats[:, -(cache["chunk_size"][0] + cache["chunk_size"][2]) :, :]
|
|
return overlap_feats
|
|
|
|
def forward_chunk(
|
|
self,
|
|
xs_pad: torch.Tensor,
|
|
ilens: torch.Tensor,
|
|
cache: dict = None,
|
|
ctc: CTC = None,
|
|
):
|
|
xs_pad *= self.output_size() ** 0.5
|
|
if self.embed is None:
|
|
xs_pad = xs_pad
|
|
else:
|
|
xs_pad = self.embed(xs_pad, cache)
|
|
if cache["tail_chunk"]:
|
|
xs_pad = to_device(cache["feats"], device=xs_pad.device)
|
|
else:
|
|
xs_pad = self._add_overlap_chunk(xs_pad, cache)
|
|
encoder_outs = self.encoders0(xs_pad, None, None, None, None)
|
|
xs_pad, masks = encoder_outs[0], encoder_outs[1]
|
|
intermediate_outs = []
|
|
if len(self.interctc_layer_idx) == 0:
|
|
encoder_outs = self.encoders(xs_pad, None, None, None, None)
|
|
xs_pad, masks = encoder_outs[0], encoder_outs[1]
|
|
else:
|
|
for layer_idx, encoder_layer in enumerate(self.encoders):
|
|
encoder_outs = encoder_layer(xs_pad, None, None, None, None)
|
|
xs_pad, masks = encoder_outs[0], encoder_outs[1]
|
|
if layer_idx + 1 in self.interctc_layer_idx:
|
|
encoder_out = xs_pad
|
|
|
|
# intermediate outputs are also normalized
|
|
if self.normalize_before:
|
|
encoder_out = self.after_norm(encoder_out)
|
|
|
|
intermediate_outs.append((layer_idx + 1, encoder_out))
|
|
|
|
if self.interctc_use_conditioning:
|
|
ctc_out = ctc.softmax(encoder_out)
|
|
xs_pad = xs_pad + self.conditioning_layer(ctc_out)
|
|
|
|
if self.normalize_before:
|
|
xs_pad = self.after_norm(xs_pad)
|
|
|
|
if len(intermediate_outs) > 0:
|
|
return (xs_pad, intermediate_outs), None, None
|
|
return xs_pad, ilens, None
|
|
|
|
|
|
class EncoderLayerSANMExport(nn.Module):
|
|
def __init__(
|
|
self,
|
|
model,
|
|
):
|
|
"""Construct an EncoderLayer object."""
|
|
super().__init__()
|
|
self.self_attn = model.self_attn
|
|
self.feed_forward = model.feed_forward
|
|
self.norm1 = model.norm1
|
|
self.norm2 = model.norm2
|
|
self.in_size = model.in_size
|
|
self.size = model.size
|
|
|
|
def forward(self, x, mask):
|
|
|
|
residual = x
|
|
x = self.norm1(x)
|
|
x = self.self_attn(x, mask)
|
|
if self.in_size == self.size:
|
|
x = x + residual
|
|
residual = x
|
|
x = self.norm2(x)
|
|
x = self.feed_forward(x)
|
|
x = x + residual
|
|
|
|
return x, mask
|
|
|
|
|
|
@tables.register("encoder_classes", "SANMEncoderChunkOptExport")
|
|
@tables.register("encoder_classes", "SANMEncoderExport")
|
|
class SANMEncoderExport(nn.Module):
|
|
def __init__(
|
|
self,
|
|
model,
|
|
max_seq_len=512,
|
|
feats_dim=560,
|
|
model_name="encoder",
|
|
onnx: bool = True,
|
|
):
|
|
super().__init__()
|
|
self.embed = model.embed
|
|
if isinstance(self.embed, StreamSinusoidalPositionEncoder):
|
|
self.embed = None
|
|
self.model = model
|
|
self.feats_dim = feats_dim
|
|
self._output_size = model._output_size
|
|
|
|
from funasr.utils.torch_function import sequence_mask
|
|
|
|
self.make_pad_mask = sequence_mask(max_seq_len, flip=False)
|
|
|
|
from funasr.models.sanm.attention import MultiHeadedAttentionSANMExport
|
|
|
|
if hasattr(model, "encoders0"):
|
|
for i, d in enumerate(self.model.encoders0):
|
|
if isinstance(d.self_attn, MultiHeadedAttentionSANM):
|
|
d.self_attn = MultiHeadedAttentionSANMExport(d.self_attn)
|
|
self.model.encoders0[i] = EncoderLayerSANMExport(d)
|
|
|
|
for i, d in enumerate(self.model.encoders):
|
|
if isinstance(d.self_attn, MultiHeadedAttentionSANM):
|
|
d.self_attn = MultiHeadedAttentionSANMExport(d.self_attn)
|
|
self.model.encoders[i] = EncoderLayerSANMExport(d)
|
|
|
|
self.model_name = model_name
|
|
self.num_heads = model.encoders[0].self_attn.h
|
|
self.hidden_size = model.encoders[0].self_attn.linear_out.out_features
|
|
|
|
def prepare_mask(self, mask):
|
|
mask_3d_btd = mask[:, :, None]
|
|
if len(mask.shape) == 2:
|
|
mask_4d_bhlt = 1 - mask[:, None, None, :]
|
|
elif len(mask.shape) == 3:
|
|
mask_4d_bhlt = 1 - mask[:, None, :]
|
|
mask_4d_bhlt = mask_4d_bhlt * -10000.0
|
|
|
|
return mask_3d_btd, mask_4d_bhlt
|
|
|
|
def forward(self, speech: torch.Tensor, speech_lengths: torch.Tensor, online: bool = False):
|
|
if not online:
|
|
speech = speech * self._output_size**0.5
|
|
mask = self.make_pad_mask(speech_lengths)
|
|
mask = self.prepare_mask(mask)
|
|
if self.embed is None:
|
|
xs_pad = speech
|
|
else:
|
|
xs_pad = self.embed(speech)
|
|
|
|
encoder_outs = self.model.encoders0(xs_pad, mask)
|
|
xs_pad, masks = encoder_outs[0], encoder_outs[1]
|
|
|
|
encoder_outs = self.model.encoders(xs_pad, mask)
|
|
xs_pad, masks = encoder_outs[0], encoder_outs[1]
|
|
|
|
xs_pad = self.model.after_norm(xs_pad)
|
|
|
|
return xs_pad, speech_lengths
|
|
|
|
def get_output_size(self):
|
|
return self.model.encoders[0].size
|
|
|
|
def get_dummy_inputs(self):
|
|
feats = torch.randn(1, 100, self.feats_dim)
|
|
return feats
|
|
|
|
def get_input_names(self):
|
|
return ["feats"]
|
|
|
|
def get_output_names(self):
|
|
return ["encoder_out", "encoder_out_lens", "predictor_weight"]
|
|
|
|
def get_dynamic_axes(self):
|
|
return {
|
|
"feats": {1: "feats_length"},
|
|
"encoder_out": {1: "enc_out_length"},
|
|
"predictor_weight": {1: "pre_out_length"},
|
|
}
|