589 lines
22 KiB
Python
589 lines
22 KiB
Python
#!/usr/bin/env python3
|
|
# -*- encoding: utf-8 -*-
|
|
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
|
|
# MIT License (https://opensource.org/licenses/MIT)
|
|
|
|
import time
|
|
import torch
|
|
import logging
|
|
from torch.cuda.amp import autocast
|
|
from typing import Union, Dict, List, Tuple, Optional
|
|
|
|
from funasr.register import tables
|
|
from funasr.models.ctc.ctc import CTC
|
|
from funasr.utils import postprocess_utils
|
|
from funasr.metrics.compute_acc import th_accuracy
|
|
from funasr.train_utils.device_funcs import to_device
|
|
from funasr.utils.datadir_writer import DatadirWriter
|
|
from funasr.models.paraformer.search import Hypothesis
|
|
from funasr.models.paraformer.cif_predictor import mae_loss
|
|
from funasr.train_utils.device_funcs import force_gatherable
|
|
from funasr.losses.label_smoothing_loss import LabelSmoothingLoss
|
|
from funasr.models.transformer.utils.add_sos_eos import add_sos_eos
|
|
from funasr.models.transformer.utils.nets_utils import make_pad_mask
|
|
from funasr.utils.load_utils import load_audio_text_image_video, extract_fbank
|
|
|
|
|
|
@tables.register("model_classes", "Paraformer")
|
|
class Paraformer(torch.nn.Module):
|
|
"""
|
|
Author: Speech Lab of DAMO Academy, Alibaba Group
|
|
Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition
|
|
https://arxiv.org/abs/2206.08317
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
specaug: Optional[str] = None,
|
|
specaug_conf: Optional[Dict] = None,
|
|
normalize: str = None,
|
|
normalize_conf: Optional[Dict] = None,
|
|
encoder: str = None,
|
|
encoder_conf: Optional[Dict] = None,
|
|
decoder: str = None,
|
|
decoder_conf: Optional[Dict] = None,
|
|
ctc: str = None,
|
|
ctc_conf: Optional[Dict] = None,
|
|
predictor: str = None,
|
|
predictor_conf: Optional[Dict] = None,
|
|
ctc_weight: float = 0.5,
|
|
input_size: int = 80,
|
|
vocab_size: int = -1,
|
|
ignore_id: int = -1,
|
|
blank_id: int = 0,
|
|
sos: int = 1,
|
|
eos: int = 2,
|
|
lsm_weight: float = 0.0,
|
|
length_normalized_loss: bool = False,
|
|
# report_cer: bool = True,
|
|
# report_wer: bool = True,
|
|
# sym_space: str = "<space>",
|
|
# sym_blank: str = "<blank>",
|
|
# extract_feats_in_collect_stats: bool = True,
|
|
# predictor=None,
|
|
predictor_weight: float = 0.0,
|
|
predictor_bias: int = 0,
|
|
sampling_ratio: float = 0.2,
|
|
share_embedding: bool = False,
|
|
# preencoder: Optional[AbsPreEncoder] = None,
|
|
# postencoder: Optional[AbsPostEncoder] = None,
|
|
use_1st_decoder_loss: bool = False,
|
|
**kwargs,
|
|
):
|
|
|
|
super().__init__()
|
|
|
|
if specaug is not None:
|
|
specaug_class = tables.specaug_classes.get(specaug)
|
|
specaug = specaug_class(**specaug_conf)
|
|
if normalize is not None:
|
|
normalize_class = tables.normalize_classes.get(normalize)
|
|
normalize = normalize_class(**normalize_conf)
|
|
encoder_class = tables.encoder_classes.get(encoder)
|
|
encoder = encoder_class(input_size=input_size, **encoder_conf)
|
|
encoder_output_size = encoder.output_size()
|
|
|
|
if decoder is not None:
|
|
decoder_class = tables.decoder_classes.get(decoder)
|
|
decoder = decoder_class(
|
|
vocab_size=vocab_size,
|
|
encoder_output_size=encoder_output_size,
|
|
**decoder_conf,
|
|
)
|
|
if ctc_weight > 0.0:
|
|
|
|
if ctc_conf is None:
|
|
ctc_conf = {}
|
|
|
|
ctc = CTC(odim=vocab_size, encoder_output_size=encoder_output_size, **ctc_conf)
|
|
if predictor is not None:
|
|
predictor_class = tables.predictor_classes.get(predictor)
|
|
predictor = predictor_class(**predictor_conf)
|
|
|
|
# note that eos is the same as sos (equivalent ID)
|
|
self.blank_id = blank_id
|
|
self.sos = sos if sos is not None else vocab_size - 1
|
|
self.eos = eos if eos is not None else vocab_size - 1
|
|
self.vocab_size = vocab_size
|
|
self.ignore_id = ignore_id
|
|
self.ctc_weight = ctc_weight
|
|
# self.token_list = token_list.copy()
|
|
#
|
|
# self.frontend = frontend
|
|
self.specaug = specaug
|
|
self.normalize = normalize
|
|
# self.preencoder = preencoder
|
|
# self.postencoder = postencoder
|
|
self.encoder = encoder
|
|
#
|
|
# if not hasattr(self.encoder, "interctc_use_conditioning"):
|
|
# self.encoder.interctc_use_conditioning = False
|
|
# if self.encoder.interctc_use_conditioning:
|
|
# self.encoder.conditioning_layer = torch.nn.Linear(
|
|
# vocab_size, self.encoder.output_size()
|
|
# )
|
|
#
|
|
# self.error_calculator = None
|
|
#
|
|
if ctc_weight == 1.0:
|
|
self.decoder = None
|
|
else:
|
|
self.decoder = decoder
|
|
|
|
self.criterion_att = LabelSmoothingLoss(
|
|
size=vocab_size,
|
|
padding_idx=ignore_id,
|
|
smoothing=lsm_weight,
|
|
normalize_length=length_normalized_loss,
|
|
)
|
|
#
|
|
# if report_cer or report_wer:
|
|
# self.error_calculator = ErrorCalculator(
|
|
# token_list, sym_space, sym_blank, report_cer, report_wer
|
|
# )
|
|
#
|
|
if ctc_weight == 0.0:
|
|
self.ctc = None
|
|
else:
|
|
self.ctc = ctc
|
|
#
|
|
# self.extract_feats_in_collect_stats = extract_feats_in_collect_stats
|
|
self.predictor = predictor
|
|
self.predictor_weight = predictor_weight
|
|
self.predictor_bias = predictor_bias
|
|
self.sampling_ratio = sampling_ratio
|
|
self.criterion_pre = mae_loss(normalize_length=length_normalized_loss)
|
|
|
|
self.share_embedding = share_embedding
|
|
if self.share_embedding:
|
|
self.decoder.embed = None
|
|
|
|
self.use_1st_decoder_loss = use_1st_decoder_loss
|
|
self.length_normalized_loss = length_normalized_loss
|
|
self.beam_search = None
|
|
self.error_calculator = None
|
|
|
|
def forward(
|
|
self,
|
|
speech: torch.Tensor,
|
|
speech_lengths: torch.Tensor,
|
|
text: torch.Tensor,
|
|
text_lengths: torch.Tensor,
|
|
**kwargs,
|
|
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
|
|
"""Encoder + Decoder + Calc loss
|
|
Args:
|
|
speech: (Batch, Length, ...)
|
|
speech_lengths: (Batch, )
|
|
text: (Batch, Length)
|
|
text_lengths: (Batch,)
|
|
"""
|
|
if len(text_lengths.size()) > 1:
|
|
text_lengths = text_lengths[:, 0]
|
|
if len(speech_lengths.size()) > 1:
|
|
speech_lengths = speech_lengths[:, 0]
|
|
|
|
batch_size = speech.shape[0]
|
|
|
|
# Encoder
|
|
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
|
|
|
|
loss_ctc, cer_ctc = None, None
|
|
loss_pre = None
|
|
stats = dict()
|
|
|
|
# decoder: CTC branch
|
|
if self.ctc_weight != 0.0:
|
|
loss_ctc, cer_ctc = self._calc_ctc_loss(
|
|
encoder_out, encoder_out_lens, text, text_lengths
|
|
)
|
|
|
|
# Collect CTC branch stats
|
|
stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None
|
|
stats["cer_ctc"] = cer_ctc
|
|
|
|
# decoder: Attention decoder branch
|
|
loss_att, acc_att, cer_att, wer_att, loss_pre, pre_loss_att = self._calc_att_loss(
|
|
encoder_out, encoder_out_lens, text, text_lengths
|
|
)
|
|
|
|
# 3. CTC-Att loss definition
|
|
if self.ctc_weight == 0.0:
|
|
loss = loss_att + loss_pre * self.predictor_weight
|
|
else:
|
|
loss = (
|
|
self.ctc_weight * loss_ctc
|
|
+ (1 - self.ctc_weight) * loss_att
|
|
+ loss_pre * self.predictor_weight
|
|
)
|
|
|
|
# Collect Attn branch stats
|
|
stats["loss_att"] = loss_att.detach() if loss_att is not None else None
|
|
stats["pre_loss_att"] = pre_loss_att.detach() if pre_loss_att is not None else None
|
|
stats["acc"] = acc_att
|
|
stats["cer"] = cer_att
|
|
stats["wer"] = wer_att
|
|
stats["loss_pre"] = loss_pre.detach().cpu() if loss_pre is not None else None
|
|
|
|
stats["loss"] = torch.clone(loss.detach())
|
|
stats["batch_size"] = batch_size
|
|
|
|
# force_gatherable: to-device and to-tensor if scalar for DataParallel
|
|
if self.length_normalized_loss:
|
|
batch_size = (text_lengths + self.predictor_bias).sum()
|
|
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
|
|
return loss, stats, weight
|
|
|
|
def encode(
|
|
self,
|
|
speech: torch.Tensor,
|
|
speech_lengths: torch.Tensor,
|
|
**kwargs,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""Encoder. Note that this method is used by asr_inference.py
|
|
Args:
|
|
speech: (Batch, Length, ...)
|
|
speech_lengths: (Batch, )
|
|
ind: int
|
|
"""
|
|
with autocast(False):
|
|
|
|
# Data augmentation
|
|
if self.specaug is not None and self.training:
|
|
speech, speech_lengths = self.specaug(speech, speech_lengths)
|
|
|
|
# Normalization for feature: e.g. Global-CMVN, Utterance-CMVN
|
|
if self.normalize is not None:
|
|
speech, speech_lengths = self.normalize(speech, speech_lengths)
|
|
|
|
# Forward encoder
|
|
encoder_out, encoder_out_lens, _ = self.encoder(speech, speech_lengths)
|
|
if isinstance(encoder_out, tuple):
|
|
encoder_out = encoder_out[0]
|
|
|
|
return encoder_out, encoder_out_lens
|
|
|
|
def calc_predictor(self, encoder_out, encoder_out_lens):
|
|
|
|
encoder_out_mask = (
|
|
~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]
|
|
).to(encoder_out.device)
|
|
pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = self.predictor(
|
|
encoder_out, None, encoder_out_mask, ignore_id=self.ignore_id
|
|
)
|
|
return pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index
|
|
|
|
def cal_decoder_with_predictor(
|
|
self, encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens
|
|
):
|
|
|
|
decoder_outs = self.decoder(encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens)
|
|
decoder_out = decoder_outs[0]
|
|
decoder_out = torch.log_softmax(decoder_out, dim=-1)
|
|
return decoder_out, ys_pad_lens
|
|
|
|
def _calc_att_loss(
|
|
self,
|
|
encoder_out: torch.Tensor,
|
|
encoder_out_lens: torch.Tensor,
|
|
ys_pad: torch.Tensor,
|
|
ys_pad_lens: torch.Tensor,
|
|
):
|
|
encoder_out_mask = (
|
|
~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]
|
|
).to(encoder_out.device)
|
|
if self.predictor_bias == 1:
|
|
_, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
|
|
ys_pad_lens = ys_pad_lens + self.predictor_bias
|
|
pre_acoustic_embeds, pre_token_length, _, pre_peak_index = self.predictor(
|
|
encoder_out, ys_pad, encoder_out_mask, ignore_id=self.ignore_id
|
|
)
|
|
|
|
# 0. sampler
|
|
decoder_out_1st = None
|
|
pre_loss_att = None
|
|
if self.sampling_ratio > 0.0:
|
|
|
|
sematic_embeds, decoder_out_1st = self.sampler(
|
|
encoder_out, encoder_out_lens, ys_pad, ys_pad_lens, pre_acoustic_embeds
|
|
)
|
|
else:
|
|
sematic_embeds = pre_acoustic_embeds
|
|
|
|
# 1. Forward decoder
|
|
decoder_outs = self.decoder(encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens)
|
|
decoder_out, _ = decoder_outs[0], decoder_outs[1]
|
|
|
|
if decoder_out_1st is None:
|
|
decoder_out_1st = decoder_out
|
|
# 2. Compute attention loss
|
|
loss_att = self.criterion_att(decoder_out, ys_pad)
|
|
acc_att = th_accuracy(
|
|
decoder_out_1st.view(-1, self.vocab_size),
|
|
ys_pad,
|
|
ignore_label=self.ignore_id,
|
|
)
|
|
loss_pre = self.criterion_pre(ys_pad_lens.type_as(pre_token_length), pre_token_length)
|
|
|
|
# Compute cer/wer using attention-decoder
|
|
if self.training or self.error_calculator is None:
|
|
cer_att, wer_att = None, None
|
|
else:
|
|
ys_hat = decoder_out_1st.argmax(dim=-1)
|
|
cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu())
|
|
|
|
return loss_att, acc_att, cer_att, wer_att, loss_pre, pre_loss_att
|
|
|
|
def sampler(self, encoder_out, encoder_out_lens, ys_pad, ys_pad_lens, pre_acoustic_embeds):
|
|
|
|
tgt_mask = (~make_pad_mask(ys_pad_lens, maxlen=ys_pad_lens.max())[:, :, None]).to(
|
|
ys_pad.device
|
|
)
|
|
ys_pad_masked = ys_pad * tgt_mask[:, :, 0]
|
|
if self.share_embedding:
|
|
ys_pad_embed = self.decoder.output_layer.weight[ys_pad_masked]
|
|
else:
|
|
ys_pad_embed = self.decoder.embed(ys_pad_masked)
|
|
with torch.no_grad():
|
|
decoder_outs = self.decoder(
|
|
encoder_out, encoder_out_lens, pre_acoustic_embeds, ys_pad_lens
|
|
)
|
|
decoder_out, _ = decoder_outs[0], decoder_outs[1]
|
|
pred_tokens = decoder_out.argmax(-1)
|
|
nonpad_positions = ys_pad.ne(self.ignore_id)
|
|
seq_lens = (nonpad_positions).sum(1)
|
|
same_num = ((pred_tokens == ys_pad) & nonpad_positions).sum(1)
|
|
input_mask = torch.ones_like(nonpad_positions)
|
|
bsz, seq_len = ys_pad.size()
|
|
for li in range(bsz):
|
|
target_num = (
|
|
((seq_lens[li] - same_num[li].sum()).float()) * self.sampling_ratio
|
|
).long()
|
|
if target_num > 0:
|
|
input_mask[li].scatter_(
|
|
dim=0,
|
|
index=torch.randperm(seq_lens[li])[:target_num].to(input_mask.device),
|
|
value=0,
|
|
)
|
|
input_mask = input_mask.eq(1)
|
|
input_mask = input_mask.masked_fill(~nonpad_positions, False)
|
|
input_mask_expand_dim = input_mask.unsqueeze(2).to(pre_acoustic_embeds.device)
|
|
|
|
sematic_embeds = pre_acoustic_embeds.masked_fill(
|
|
~input_mask_expand_dim, 0
|
|
) + ys_pad_embed.masked_fill(input_mask_expand_dim, 0)
|
|
return sematic_embeds * tgt_mask, decoder_out * tgt_mask
|
|
|
|
def _calc_ctc_loss(
|
|
self,
|
|
encoder_out: torch.Tensor,
|
|
encoder_out_lens: torch.Tensor,
|
|
ys_pad: torch.Tensor,
|
|
ys_pad_lens: torch.Tensor,
|
|
):
|
|
# Calc CTC loss
|
|
loss_ctc = self.ctc(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens)
|
|
|
|
# Calc CER using CTC
|
|
cer_ctc = None
|
|
if not self.training and self.error_calculator is not None:
|
|
ys_hat = self.ctc.argmax(encoder_out).data
|
|
cer_ctc = self.error_calculator(ys_hat.cpu(), ys_pad.cpu(), is_ctc=True)
|
|
return loss_ctc, cer_ctc
|
|
|
|
def init_beam_search(
|
|
self,
|
|
**kwargs,
|
|
):
|
|
from funasr.models.paraformer.search import BeamSearchPara
|
|
from funasr.models.transformer.scorers.ctc import CTCPrefixScorer
|
|
from funasr.models.transformer.scorers.length_bonus import LengthBonus
|
|
|
|
# 1. Build ASR model
|
|
scorers = {}
|
|
|
|
if self.ctc != None:
|
|
ctc = CTCPrefixScorer(ctc=self.ctc, eos=self.eos)
|
|
scorers.update(ctc=ctc)
|
|
token_list = kwargs.get("token_list")
|
|
scorers.update(
|
|
length_bonus=LengthBonus(len(token_list)),
|
|
)
|
|
|
|
# 3. Build ngram model
|
|
# ngram is not supported now
|
|
ngram = None
|
|
scorers["ngram"] = ngram
|
|
|
|
weights = dict(
|
|
decoder=1.0 - kwargs.get("decoding_ctc_weight"),
|
|
ctc=kwargs.get("decoding_ctc_weight", 0.0),
|
|
lm=kwargs.get("lm_weight", 0.0),
|
|
ngram=kwargs.get("ngram_weight", 0.0),
|
|
length_bonus=kwargs.get("penalty", 0.0),
|
|
)
|
|
beam_search = BeamSearchPara(
|
|
beam_size=kwargs.get("beam_size", 2),
|
|
weights=weights,
|
|
scorers=scorers,
|
|
sos=self.sos,
|
|
eos=self.eos,
|
|
vocab_size=len(token_list),
|
|
token_list=token_list,
|
|
pre_beam_score_key=None if self.ctc_weight == 1.0 else "full",
|
|
)
|
|
# beam_search.to(device=kwargs.get("device", "cpu"), dtype=getattr(torch, kwargs.get("dtype", "float32"))).eval()
|
|
# for scorer in scorers.values():
|
|
# if isinstance(scorer, torch.nn.Module):
|
|
# scorer.to(device=kwargs.get("device", "cpu"), dtype=getattr(torch, kwargs.get("dtype", "float32"))).eval()
|
|
self.beam_search = beam_search
|
|
|
|
def inference(
|
|
self,
|
|
data_in,
|
|
data_lengths=None,
|
|
key: list = None,
|
|
tokenizer=None,
|
|
frontend=None,
|
|
**kwargs,
|
|
):
|
|
# init beamsearch
|
|
is_use_ctc = kwargs.get("decoding_ctc_weight", 0.0) > 0.00001 and self.ctc != None
|
|
is_use_lm = (
|
|
kwargs.get("lm_weight", 0.0) > 0.00001 and kwargs.get("lm_file", None) is not None
|
|
)
|
|
if self.beam_search is None and (is_use_lm or is_use_ctc):
|
|
logging.info("enable beam_search")
|
|
self.init_beam_search(**kwargs)
|
|
self.nbest = kwargs.get("nbest", 1)
|
|
|
|
meta_data = {}
|
|
if (
|
|
isinstance(data_in, torch.Tensor) and kwargs.get("data_type", "sound") == "fbank"
|
|
): # fbank
|
|
speech, speech_lengths = data_in, data_lengths
|
|
if len(speech.shape) < 3:
|
|
speech = speech[None, :, :]
|
|
if speech_lengths is not None:
|
|
speech_lengths = speech_lengths.squeeze(-1)
|
|
else:
|
|
speech_lengths = speech.shape[1]
|
|
else:
|
|
# extract fbank feats
|
|
time1 = time.perf_counter()
|
|
audio_sample_list = load_audio_text_image_video(
|
|
data_in,
|
|
fs=frontend.fs,
|
|
audio_fs=kwargs.get("fs", 16000),
|
|
data_type=kwargs.get("data_type", "sound"),
|
|
tokenizer=tokenizer,
|
|
)
|
|
time2 = time.perf_counter()
|
|
meta_data["load_data"] = f"{time2 - time1:0.3f}"
|
|
speech, speech_lengths = extract_fbank(
|
|
audio_sample_list, data_type=kwargs.get("data_type", "sound"), frontend=frontend
|
|
)
|
|
time3 = time.perf_counter()
|
|
meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
|
|
meta_data["batch_data_time"] = (
|
|
speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000
|
|
)
|
|
|
|
speech = speech.to(device=kwargs["device"])
|
|
speech_lengths = speech_lengths.to(device=kwargs["device"])
|
|
# Encoder
|
|
if kwargs.get("fp16", False):
|
|
speech = speech.half()
|
|
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
|
|
if isinstance(encoder_out, tuple):
|
|
encoder_out = encoder_out[0]
|
|
|
|
# predictor
|
|
predictor_outs = self.calc_predictor(encoder_out, encoder_out_lens)
|
|
pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = (
|
|
predictor_outs[0],
|
|
predictor_outs[1],
|
|
predictor_outs[2],
|
|
predictor_outs[3],
|
|
)
|
|
pre_token_length = pre_token_length.round().long()
|
|
if torch.max(pre_token_length) < 1:
|
|
return []
|
|
decoder_outs = self.cal_decoder_with_predictor(
|
|
encoder_out, encoder_out_lens, pre_acoustic_embeds, pre_token_length
|
|
)
|
|
decoder_out, ys_pad_lens = decoder_outs[0], decoder_outs[1]
|
|
|
|
results = []
|
|
b, n, d = decoder_out.size()
|
|
if isinstance(key[0], (list, tuple)):
|
|
key = key[0]
|
|
if len(key) < b:
|
|
key = key * b
|
|
for i in range(b):
|
|
x = encoder_out[i, : encoder_out_lens[i], :]
|
|
am_scores = decoder_out[i, : pre_token_length[i], :]
|
|
if self.beam_search is not None:
|
|
nbest_hyps = self.beam_search(
|
|
x=x,
|
|
am_scores=am_scores,
|
|
maxlenratio=kwargs.get("maxlenratio", 0.0),
|
|
minlenratio=kwargs.get("minlenratio", 0.0),
|
|
)
|
|
|
|
nbest_hyps = nbest_hyps[: self.nbest]
|
|
else:
|
|
|
|
yseq = am_scores.argmax(dim=-1)
|
|
score = am_scores.max(dim=-1)[0]
|
|
score = torch.sum(score, dim=-1)
|
|
# pad with mask tokens to ensure compatibility with sos/eos tokens
|
|
yseq = torch.tensor([self.sos] + yseq.tolist() + [self.eos], device=yseq.device)
|
|
nbest_hyps = [Hypothesis(yseq=yseq, score=score)]
|
|
for nbest_idx, hyp in enumerate(nbest_hyps):
|
|
ibest_writer = None
|
|
if kwargs.get("output_dir") is not None:
|
|
if not hasattr(self, "writer"):
|
|
self.writer = DatadirWriter(kwargs.get("output_dir"))
|
|
ibest_writer = self.writer[f"{nbest_idx+1}best_recog"]
|
|
# remove sos/eos and get results
|
|
last_pos = -1
|
|
if isinstance(hyp.yseq, list):
|
|
token_int = hyp.yseq[1:last_pos]
|
|
else:
|
|
token_int = hyp.yseq[1:last_pos].tolist()
|
|
|
|
# remove blank symbol id, which is assumed to be 0
|
|
token_int = list(
|
|
filter(
|
|
lambda x: x != self.eos and x != self.sos and x != self.blank_id, token_int
|
|
)
|
|
)
|
|
|
|
if tokenizer is not None:
|
|
# Change integer-ids to tokens
|
|
token = tokenizer.ids2tokens(token_int)
|
|
text_postprocessed = tokenizer.tokens2text(token)
|
|
if not hasattr(tokenizer, "bpemodel"):
|
|
text_postprocessed, _ = postprocess_utils.sentence_postprocess(token)
|
|
|
|
result_i = {"key": key[i], "text": text_postprocessed}
|
|
|
|
if ibest_writer is not None:
|
|
ibest_writer["token"][key[i]] = " ".join(token)
|
|
# ibest_writer["text"][key[i]] = text
|
|
ibest_writer["text"][key[i]] = text_postprocessed
|
|
else:
|
|
result_i = {"key": key[i], "token_int": token_int}
|
|
results.append(result_i)
|
|
|
|
return results, meta_data
|
|
|
|
def export(self, **kwargs):
|
|
from .export_meta import export_rebuild_model
|
|
|
|
if "max_seq_len" not in kwargs:
|
|
kwargs["max_seq_len"] = 512
|
|
models = export_rebuild_model(model=self, **kwargs)
|
|
return models
|