66 lines
2.1 KiB
Python
66 lines
2.1 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
|
|
from funasr.register import tables
|
|
|
|
|
|
@tables.register("adaptor_classes", "Linear")
|
|
class Linear(nn.Module):
|
|
def __init__(self, downsample_rate, encoder_dim, llm_dim, ffn_dim: int = 2048, **kwargs):
|
|
super().__init__()
|
|
self.k = downsample_rate
|
|
self.encoder_dim = encoder_dim
|
|
self.llm_dim = llm_dim
|
|
self.linear1 = nn.Linear(self.encoder_dim * self.k, ffn_dim)
|
|
self.relu = nn.ReLU()
|
|
self.linear2 = nn.Linear(ffn_dim, self.llm_dim)
|
|
|
|
def forward(self, x):
|
|
batch_size, seq_len, dim = x.size()
|
|
num_frames_to_discard = seq_len % self.k
|
|
if num_frames_to_discard > 0:
|
|
x = x[:, :-num_frames_to_discard, :]
|
|
seq_len = x.size(1)
|
|
|
|
x = x.contiguous()
|
|
x = x.view(batch_size, seq_len // self.k, dim * self.k)
|
|
x = self.linear1(x)
|
|
x = self.relu(x)
|
|
x = self.linear2(x)
|
|
return x
|
|
|
|
|
|
@tables.register("adaptor_classes", "QFormer")
|
|
class EncoderProjectorQFormer(nn.Module):
|
|
def __init__(self, downsample_rate, encoder_dim, llm_dim, ffn_dim: int = 2048, **kwargs):
|
|
super().__init__()
|
|
self.encoder_dim = encoder_dim
|
|
self.llm_dim = llm_dim
|
|
from transformers import Blip2QFormerConfig, Blip2QFormerModel
|
|
|
|
configuration = Blip2QFormerConfig()
|
|
configuration.encoder_hidden_size = self.encoder_dim
|
|
configuration.num_hidden_layers = 2
|
|
|
|
self.query_len = 64
|
|
self.query = nn.Parameter(torch.zeros(1, self.query_len, configuration.hidden_size))
|
|
self.query.data.normal_(mean=0.0, std=1.0)
|
|
self.qformer = Blip2QFormerModel(configuration)
|
|
|
|
self.linear = nn.Linear(configuration.hidden_size, self.llm_dim)
|
|
self.norm = nn.LayerNorm(self.llm_dim, eps=1e-5)
|
|
|
|
def forward(self, x, atts):
|
|
query = self.query.expand(x.shape[0], -1, -1)
|
|
|
|
query_output = self.qformer(
|
|
query_embeds=query,
|
|
encoder_hidden_states=x,
|
|
encoder_attention_mask=atts,
|
|
return_dict=True,
|
|
)
|
|
|
|
query_proj = self.norm(self.linear(query_output.last_hidden_state))
|
|
|
|
return query_proj
|