179 lines
6.1 KiB
Python
179 lines
6.1 KiB
Python
import logging
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
|
|
|
|
class CTC(torch.nn.Module):
|
|
"""CTC module.
|
|
|
|
Args:
|
|
odim: dimension of outputs
|
|
encoder_output_size: number of encoder projection units
|
|
dropout_rate: dropout rate (0.0 ~ 1.0)
|
|
ctc_type: builtin or warpctc
|
|
reduce: reduce the CTC loss into a scalar
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
odim: int,
|
|
encoder_output_size: int,
|
|
dropout_rate: float = 0.0,
|
|
ctc_type: str = "builtin",
|
|
reduce: bool = True,
|
|
ignore_nan_grad: bool = True,
|
|
):
|
|
super().__init__()
|
|
eprojs = encoder_output_size
|
|
self.dropout_rate = dropout_rate
|
|
self.ctc_lo = torch.nn.Linear(eprojs, odim)
|
|
self.ctc_type = ctc_type
|
|
self.ignore_nan_grad = ignore_nan_grad
|
|
|
|
if self.ctc_type == "builtin":
|
|
self.ctc_loss = torch.nn.CTCLoss(reduction="none")
|
|
elif self.ctc_type == "warpctc":
|
|
import warpctc_pytorch as warp_ctc
|
|
|
|
if ignore_nan_grad:
|
|
logging.warning("ignore_nan_grad option is not supported for warp_ctc")
|
|
self.ctc_loss = warp_ctc.CTCLoss(size_average=True, reduce=reduce)
|
|
else:
|
|
raise ValueError(f'ctc_type must be "builtin" or "warpctc": {self.ctc_type}')
|
|
|
|
self.reduce = reduce
|
|
|
|
def loss_fn(self, th_pred, th_target, th_ilen, th_olen) -> torch.Tensor:
|
|
if self.ctc_type == "builtin":
|
|
th_pred = th_pred.log_softmax(2)
|
|
loss = self.ctc_loss(th_pred, th_target, th_ilen, th_olen)
|
|
|
|
if loss.requires_grad and self.ignore_nan_grad:
|
|
# ctc_grad: (L, B, O)
|
|
ctc_grad = loss.grad_fn(torch.ones_like(loss))
|
|
ctc_grad = ctc_grad.sum([0, 2])
|
|
indices = torch.isfinite(ctc_grad)
|
|
size = indices.long().sum()
|
|
if size == 0:
|
|
# Return as is
|
|
logging.warning(
|
|
"All samples in this mini-batch got nan grad."
|
|
" Returning nan value instead of CTC loss"
|
|
)
|
|
elif size != th_pred.size(1):
|
|
logging.warning(
|
|
f"{th_pred.size(1) - size}/{th_pred.size(1)}"
|
|
" samples got nan grad."
|
|
" These were ignored for CTC loss."
|
|
)
|
|
|
|
# Create mask for target
|
|
target_mask = torch.full(
|
|
[th_target.size(0)],
|
|
1,
|
|
dtype=torch.bool,
|
|
device=th_target.device,
|
|
)
|
|
s = 0
|
|
for ind, le in enumerate(th_olen):
|
|
if not indices[ind]:
|
|
target_mask[s : s + le] = 0
|
|
s += le
|
|
|
|
# Calc loss again using maksed data
|
|
loss = self.ctc_loss(
|
|
th_pred[:, indices, :],
|
|
th_target[target_mask],
|
|
th_ilen[indices],
|
|
th_olen[indices],
|
|
)
|
|
else:
|
|
size = th_pred.size(1)
|
|
|
|
if self.reduce:
|
|
# Batch-size average
|
|
loss = loss.sum() / size
|
|
else:
|
|
loss = loss / size
|
|
return loss
|
|
|
|
elif self.ctc_type == "warpctc":
|
|
# warpctc only supports float32
|
|
th_pred = th_pred.to(dtype=torch.float32)
|
|
|
|
th_target = th_target.cpu().int()
|
|
th_ilen = th_ilen.cpu().int()
|
|
th_olen = th_olen.cpu().int()
|
|
loss = self.ctc_loss(th_pred, th_target, th_ilen, th_olen)
|
|
if self.reduce:
|
|
# NOTE: sum() is needed to keep consistency since warpctc
|
|
# return as tensor w/ shape (1,)
|
|
# but builtin return as tensor w/o shape (scalar).
|
|
loss = loss.sum()
|
|
return loss
|
|
|
|
elif self.ctc_type == "gtnctc":
|
|
log_probs = torch.nn.functional.log_softmax(th_pred, dim=2)
|
|
return self.ctc_loss(log_probs, th_target, th_ilen, 0, "none")
|
|
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
def forward(self, hs_pad, hlens, ys_pad, ys_lens):
|
|
"""Calculate CTC loss.
|
|
|
|
Args:
|
|
hs_pad: batch of padded hidden state sequences (B, Tmax, D)
|
|
hlens: batch of lengths of hidden state sequences (B)
|
|
ys_pad: batch of padded character id sequence tensor (B, Lmax)
|
|
ys_lens: batch of lengths of character sequence (B)
|
|
"""
|
|
# hs_pad: (B, L, NProj) -> ys_hat: (B, L, Nvocab)
|
|
ys_hat = self.ctc_lo(F.dropout(hs_pad, p=self.dropout_rate))
|
|
|
|
if self.ctc_type == "gtnctc":
|
|
# gtn expects list form for ys
|
|
ys_true = [y[y != -1] for y in ys_pad] # parse padded ys
|
|
else:
|
|
# ys_hat: (B, L, D) -> (L, B, D)
|
|
ys_hat = ys_hat.transpose(0, 1)
|
|
# (B, L) -> (BxL,)
|
|
ys_true = torch.cat([ys_pad[i, :l] for i, l in enumerate(ys_lens)])
|
|
|
|
loss = self.loss_fn(ys_hat, ys_true, hlens, ys_lens).to(
|
|
device=hs_pad.device, dtype=hs_pad.dtype
|
|
)
|
|
|
|
return loss
|
|
|
|
def softmax(self, hs_pad):
|
|
"""softmax of frame activations
|
|
|
|
Args:
|
|
Tensor hs_pad: 3d tensor (B, Tmax, eprojs)
|
|
Returns:
|
|
torch.Tensor: softmax applied 3d tensor (B, Tmax, odim)
|
|
"""
|
|
return F.softmax(self.ctc_lo(hs_pad), dim=2)
|
|
|
|
def log_softmax(self, hs_pad):
|
|
"""log_softmax of frame activations
|
|
|
|
Args:
|
|
Tensor hs_pad: 3d tensor (B, Tmax, eprojs)
|
|
Returns:
|
|
torch.Tensor: log softmax applied 3d tensor (B, Tmax, odim)
|
|
"""
|
|
return F.log_softmax(self.ctc_lo(hs_pad), dim=2)
|
|
|
|
def argmax(self, hs_pad):
|
|
"""argmax of frame activations
|
|
|
|
Args:
|
|
torch.Tensor hs_pad: 3d tensor (B, Tmax, eprojs)
|
|
Returns:
|
|
torch.Tensor: argmax applied 2d tensor (B, Tmax)
|
|
"""
|
|
return torch.argmax(self.ctc_lo(hs_pad), dim=2)
|