421 lines
16 KiB
Python
421 lines
16 KiB
Python
#!/usr/bin/env python3
|
||
# -*- encoding: utf-8 -*-
|
||
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
|
||
# MIT License (https://opensource.org/licenses/MIT)
|
||
|
||
import copy
|
||
import torch
|
||
import numpy as np
|
||
import torch.nn.functional as F
|
||
from contextlib import contextmanager
|
||
from distutils.version import LooseVersion
|
||
from typing import Any, List, Tuple, Optional
|
||
|
||
from funasr.register import tables
|
||
from funasr.train_utils.device_funcs import to_device
|
||
from funasr.train_utils.device_funcs import force_gatherable
|
||
from funasr.utils.load_utils import load_audio_text_image_video
|
||
from funasr.models.transformer.utils.nets_utils import make_pad_mask
|
||
from funasr.models.ct_transformer.utils import split_to_mini_sentence, split_words
|
||
|
||
try:
|
||
import jieba
|
||
except:
|
||
pass
|
||
if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
|
||
from torch.cuda.amp import autocast
|
||
else:
|
||
# Nothing to do if torch<1.6.0
|
||
@contextmanager
|
||
def autocast(enabled=True):
|
||
yield
|
||
|
||
|
||
@tables.register("model_classes", "CTTransformer")
|
||
class CTTransformer(torch.nn.Module):
|
||
"""
|
||
Author: Speech Lab of DAMO Academy, Alibaba Group
|
||
CT-Transformer: Controllable time-delay transformer for real-time punctuation prediction and disfluency detection
|
||
https://arxiv.org/pdf/2003.01309.pdf
|
||
"""
|
||
|
||
def __init__(
|
||
self,
|
||
encoder: str = None,
|
||
encoder_conf: dict = None,
|
||
vocab_size: int = -1,
|
||
punc_list: list = None,
|
||
punc_weight: list = None,
|
||
embed_unit: int = 128,
|
||
att_unit: int = 256,
|
||
dropout_rate: float = 0.5,
|
||
ignore_id: int = -1,
|
||
sos: int = 1,
|
||
eos: int = 2,
|
||
sentence_end_id: int = 3,
|
||
**kwargs,
|
||
):
|
||
super().__init__()
|
||
|
||
punc_size = len(punc_list)
|
||
if punc_weight is None:
|
||
punc_weight = [1] * punc_size
|
||
|
||
self.embed = torch.nn.Embedding(vocab_size, embed_unit)
|
||
encoder_class = tables.encoder_classes.get(encoder)
|
||
encoder = encoder_class(**encoder_conf)
|
||
|
||
self.decoder = torch.nn.Linear(att_unit, punc_size)
|
||
self.encoder = encoder
|
||
self.punc_list = punc_list
|
||
self.punc_weight = punc_weight
|
||
self.ignore_id = ignore_id
|
||
self.sos = sos
|
||
self.eos = eos
|
||
self.sentence_end_id = sentence_end_id
|
||
self.jieba_usr_dict = None
|
||
if kwargs.get("jieba_usr_dict", None) is not None:
|
||
jieba.load_userdict(kwargs["jieba_usr_dict"])
|
||
self.jieba_usr_dict = jieba
|
||
|
||
def punc_forward(self, text: torch.Tensor, text_lengths: torch.Tensor, **kwargs):
|
||
"""Compute loss value from buffer sequences.
|
||
|
||
Args:
|
||
input (torch.Tensor): Input ids. (batch, len)
|
||
hidden (torch.Tensor): Target ids. (batch, len)
|
||
|
||
"""
|
||
x = self.embed(text)
|
||
# mask = self._target_mask(input)
|
||
h, _, _ = self.encoder(x, text_lengths)
|
||
y = self.decoder(h)
|
||
return y, None
|
||
|
||
def with_vad(self):
|
||
return False
|
||
|
||
def score(self, y: torch.Tensor, state: Any, x: torch.Tensor) -> Tuple[torch.Tensor, Any]:
|
||
"""Score new token.
|
||
|
||
Args:
|
||
y (torch.Tensor): 1D torch.int64 prefix tokens.
|
||
state: Scorer state for prefix tokens
|
||
x (torch.Tensor): encoder feature that generates ys.
|
||
|
||
Returns:
|
||
tuple[torch.Tensor, Any]: Tuple of
|
||
torch.float32 scores for next token (vocab_size)
|
||
and next state for ys
|
||
|
||
"""
|
||
y = y.unsqueeze(0)
|
||
h, _, cache = self.encoder.forward_one_step(
|
||
self.embed(y), self._target_mask(y), cache=state
|
||
)
|
||
h = self.decoder(h[:, -1])
|
||
logp = h.log_softmax(dim=-1).squeeze(0)
|
||
return logp, cache
|
||
|
||
def batch_score(
|
||
self, ys: torch.Tensor, states: List[Any], xs: torch.Tensor
|
||
) -> Tuple[torch.Tensor, List[Any]]:
|
||
"""Score new token batch.
|
||
|
||
Args:
|
||
ys (torch.Tensor): torch.int64 prefix tokens (n_batch, ylen).
|
||
states (List[Any]): Scorer states for prefix tokens.
|
||
xs (torch.Tensor):
|
||
The encoder feature that generates ys (n_batch, xlen, n_feat).
|
||
|
||
Returns:
|
||
tuple[torch.Tensor, List[Any]]: Tuple of
|
||
batchfied scores for next token with shape of `(n_batch, vocab_size)`
|
||
and next state list for ys.
|
||
|
||
"""
|
||
# merge states
|
||
n_batch = len(ys)
|
||
n_layers = len(self.encoder.encoders)
|
||
if states[0] is None:
|
||
batch_state = None
|
||
else:
|
||
# transpose state of [batch, layer] into [layer, batch]
|
||
batch_state = [
|
||
torch.stack([states[b][i] for b in range(n_batch)]) for i in range(n_layers)
|
||
]
|
||
|
||
# batch decoding
|
||
h, _, states = self.encoder.forward_one_step(
|
||
self.embed(ys), self._target_mask(ys), cache=batch_state
|
||
)
|
||
h = self.decoder(h[:, -1])
|
||
logp = h.log_softmax(dim=-1)
|
||
|
||
# transpose state of [layer, batch] into [batch, layer]
|
||
state_list = [[states[i][b] for i in range(n_layers)] for b in range(n_batch)]
|
||
return logp, state_list
|
||
|
||
def nll(
|
||
self,
|
||
text: torch.Tensor,
|
||
punc: torch.Tensor,
|
||
text_lengths: torch.Tensor,
|
||
punc_lengths: torch.Tensor,
|
||
max_length: Optional[int] = None,
|
||
vad_indexes: Optional[torch.Tensor] = None,
|
||
vad_indexes_lengths: Optional[torch.Tensor] = None,
|
||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||
"""Compute negative log likelihood(nll)
|
||
|
||
Normally, this function is called in batchify_nll.
|
||
Args:
|
||
text: (Batch, Length)
|
||
punc: (Batch, Length)
|
||
text_lengths: (Batch,)
|
||
max_lengths: int
|
||
"""
|
||
batch_size = text.size(0)
|
||
# For data parallel
|
||
if max_length is None:
|
||
text = text[:, : text_lengths.max()]
|
||
punc = punc[:, : text_lengths.max()]
|
||
else:
|
||
text = text[:, :max_length]
|
||
punc = punc[:, :max_length]
|
||
|
||
if self.with_vad():
|
||
# Should be VadRealtimeTransformer
|
||
assert vad_indexes is not None
|
||
y, _ = self.punc_forward(text, text_lengths, vad_indexes)
|
||
else:
|
||
# Should be TargetDelayTransformer,
|
||
y, _ = self.punc_forward(text, text_lengths)
|
||
|
||
# Calc negative log likelihood
|
||
# nll: (BxL,)
|
||
if self.training == False:
|
||
_, indices = y.view(-1, y.shape[-1]).topk(1, dim=1)
|
||
from sklearn.metrics import f1_score
|
||
|
||
f1_score = f1_score(
|
||
punc.view(-1).detach().cpu().numpy(),
|
||
indices.squeeze(-1).detach().cpu().numpy(),
|
||
average="micro",
|
||
)
|
||
nll = torch.Tensor([f1_score]).repeat(text_lengths.sum())
|
||
return nll, text_lengths
|
||
else:
|
||
self.punc_weight = self.punc_weight.to(punc.device)
|
||
nll = F.cross_entropy(
|
||
y.view(-1, y.shape[-1]),
|
||
punc.view(-1),
|
||
self.punc_weight,
|
||
reduction="none",
|
||
ignore_index=self.ignore_id,
|
||
)
|
||
# nll: (BxL,) -> (BxL,)
|
||
if max_length is None:
|
||
nll.masked_fill_(make_pad_mask(text_lengths).to(nll.device).view(-1), 0.0)
|
||
else:
|
||
nll.masked_fill_(
|
||
make_pad_mask(text_lengths, maxlen=max_length + 1).to(nll.device).view(-1),
|
||
0.0,
|
||
)
|
||
# nll: (BxL,) -> (B, L)
|
||
nll = nll.view(batch_size, -1)
|
||
return nll, text_lengths
|
||
|
||
def forward(
|
||
self,
|
||
text: torch.Tensor,
|
||
punc: torch.Tensor,
|
||
text_lengths: torch.Tensor,
|
||
punc_lengths: torch.Tensor,
|
||
vad_indexes: Optional[torch.Tensor] = None,
|
||
vad_indexes_lengths: Optional[torch.Tensor] = None,
|
||
):
|
||
nll, y_lengths = self.nll(text, punc, text_lengths, punc_lengths, vad_indexes=vad_indexes)
|
||
ntokens = y_lengths.sum()
|
||
loss = nll.sum() / ntokens
|
||
stats = dict(loss=loss.detach())
|
||
|
||
# force_gatherable: to-device and to-tensor if scalar for DataParallel
|
||
loss, stats, weight = force_gatherable((loss, stats, ntokens), loss.device)
|
||
return loss, stats, weight
|
||
|
||
def inference(
|
||
self,
|
||
data_in,
|
||
data_lengths=None,
|
||
key: list = None,
|
||
tokenizer=None,
|
||
frontend=None,
|
||
**kwargs,
|
||
):
|
||
assert len(data_in) == 1
|
||
text = load_audio_text_image_video(data_in, data_type=kwargs.get("kwargs", "text"))[0]
|
||
vad_indexes = kwargs.get("vad_indexes", None)
|
||
# text = data_in[0]
|
||
# text_lengths = data_lengths[0] if data_lengths is not None else None
|
||
split_size = kwargs.get("split_size", 20)
|
||
|
||
tokens = split_words(text, jieba_usr_dict=self.jieba_usr_dict)
|
||
tokens_int = tokenizer.encode(tokens)
|
||
|
||
mini_sentences = split_to_mini_sentence(tokens, split_size)
|
||
mini_sentences_id = split_to_mini_sentence(tokens_int, split_size)
|
||
assert len(mini_sentences) == len(mini_sentences_id)
|
||
cache_sent = []
|
||
cache_sent_id = torch.from_numpy(np.array([], dtype="int32"))
|
||
new_mini_sentence = ""
|
||
new_mini_sentence_punc = []
|
||
cache_pop_trigger_limit = 200
|
||
results = []
|
||
meta_data = {}
|
||
punc_array = None
|
||
for mini_sentence_i in range(len(mini_sentences)):
|
||
mini_sentence = mini_sentences[mini_sentence_i]
|
||
mini_sentence_id = mini_sentences_id[mini_sentence_i]
|
||
mini_sentence = cache_sent + mini_sentence
|
||
mini_sentence_id = np.concatenate((cache_sent_id, mini_sentence_id), axis=0)
|
||
data = {
|
||
"text": torch.unsqueeze(torch.from_numpy(mini_sentence_id), 0),
|
||
"text_lengths": torch.from_numpy(np.array([len(mini_sentence_id)], dtype="int32")),
|
||
}
|
||
data = to_device(data, kwargs["device"])
|
||
# y, _ = self.wrapped_model(**data)
|
||
y, _ = self.punc_forward(**data)
|
||
_, indices = y.view(-1, y.shape[-1]).topk(1, dim=1)
|
||
punctuations = torch.squeeze(indices, dim=1)
|
||
assert punctuations.size()[0] == len(mini_sentence)
|
||
|
||
# Search for the last Period/QuestionMark as cache
|
||
if mini_sentence_i < len(mini_sentences) - 1:
|
||
sentenceEnd = -1
|
||
last_comma_index = -1
|
||
for i in range(len(punctuations) - 2, 1, -1):
|
||
if (
|
||
self.punc_list[punctuations[i]] == "。"
|
||
or self.punc_list[punctuations[i]] == "?"
|
||
):
|
||
sentenceEnd = i
|
||
break
|
||
if last_comma_index < 0 and self.punc_list[punctuations[i]] == ",":
|
||
last_comma_index = i
|
||
|
||
if (
|
||
sentenceEnd < 0
|
||
and len(mini_sentence) > cache_pop_trigger_limit
|
||
and last_comma_index >= 0
|
||
):
|
||
# The sentence it too long, cut off at a comma.
|
||
sentenceEnd = last_comma_index
|
||
punctuations[sentenceEnd] = self.sentence_end_id
|
||
cache_sent = mini_sentence[sentenceEnd + 1 :]
|
||
cache_sent_id = mini_sentence_id[sentenceEnd + 1 :]
|
||
mini_sentence = mini_sentence[0 : sentenceEnd + 1]
|
||
punctuations = punctuations[0 : sentenceEnd + 1]
|
||
|
||
# if len(punctuations) == 0:
|
||
# continue
|
||
|
||
punctuations_np = punctuations.cpu().numpy()
|
||
new_mini_sentence_punc += [int(x) for x in punctuations_np]
|
||
words_with_punc = []
|
||
for i in range(len(mini_sentence)):
|
||
if (
|
||
i == 0
|
||
or self.punc_list[punctuations[i - 1]] == "。"
|
||
or self.punc_list[punctuations[i - 1]] == "?"
|
||
) and len(mini_sentence[i][0].encode()) == 1:
|
||
mini_sentence[i] = mini_sentence[i].capitalize()
|
||
if i == 0:
|
||
if len(mini_sentence[i][0].encode()) == 1:
|
||
mini_sentence[i] = " " + mini_sentence[i]
|
||
if i > 0:
|
||
if (
|
||
len(mini_sentence[i][0].encode()) == 1
|
||
and len(mini_sentence[i - 1][0].encode()) == 1
|
||
):
|
||
mini_sentence[i] = " " + mini_sentence[i]
|
||
words_with_punc.append(mini_sentence[i])
|
||
if self.punc_list[punctuations[i]] != "_":
|
||
punc_res = self.punc_list[punctuations[i]]
|
||
if len(mini_sentence[i][0].encode()) == 1:
|
||
if punc_res == ",":
|
||
punc_res = ","
|
||
elif punc_res == "。":
|
||
punc_res = "."
|
||
elif punc_res == "?":
|
||
punc_res = "?"
|
||
words_with_punc.append(punc_res)
|
||
new_mini_sentence += "".join(words_with_punc)
|
||
# Add Period for the end of the sentence
|
||
new_mini_sentence_out = new_mini_sentence
|
||
new_mini_sentence_punc_out = new_mini_sentence_punc
|
||
if mini_sentence_i == len(mini_sentences) - 1:
|
||
if new_mini_sentence[-1] == "," or new_mini_sentence[-1] == "、":
|
||
new_mini_sentence_out = new_mini_sentence[:-1] + "。"
|
||
new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [
|
||
self.sentence_end_id
|
||
]
|
||
elif new_mini_sentence[-1] == ",":
|
||
new_mini_sentence_out = new_mini_sentence[:-1] + "."
|
||
new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [
|
||
self.sentence_end_id
|
||
]
|
||
elif (
|
||
new_mini_sentence[-1] != "。"
|
||
and new_mini_sentence[-1] != "?"
|
||
and len(new_mini_sentence[-1].encode()) != 1
|
||
):
|
||
new_mini_sentence_out = new_mini_sentence + "。"
|
||
new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [
|
||
self.sentence_end_id
|
||
]
|
||
if len(punctuations):
|
||
punctuations[-1] = 2
|
||
elif (
|
||
new_mini_sentence[-1] != "."
|
||
and new_mini_sentence[-1] != "?"
|
||
and len(new_mini_sentence[-1].encode()) == 1
|
||
):
|
||
new_mini_sentence_out = new_mini_sentence + "."
|
||
new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [
|
||
self.sentence_end_id
|
||
]
|
||
if len(punctuations):
|
||
punctuations[-1] = 2
|
||
# keep a punctuations array for punc segment
|
||
if punc_array is None:
|
||
punc_array = punctuations
|
||
else:
|
||
punc_array = torch.cat([punc_array, punctuations], dim=0)
|
||
|
||
# post processing when using word level punc model
|
||
if self.jieba_usr_dict is not None:
|
||
punc_array = punc_array.reshape(-1)
|
||
len_tokens = len(tokens)
|
||
new_punc_array = copy.copy(punc_array).tolist()
|
||
# for i, (token, punc_id) in enumerate(zip(tokens[::-1], punc_array.tolist()[::-1])):
|
||
for i, token in enumerate(tokens[::-1]):
|
||
if "\u0e00" <= token[0] <= "\u9fa5": # ignore en words
|
||
if len(token) > 1:
|
||
num_append = len(token) - 1
|
||
ind_append = len_tokens - i - 1
|
||
for _ in range(num_append):
|
||
new_punc_array.insert(ind_append, 1)
|
||
punc_array = torch.tensor(new_punc_array)
|
||
|
||
result_i = {"key": key[0], "text": new_mini_sentence_out, "punc_array": punc_array}
|
||
results.append(result_i)
|
||
return results, meta_data
|
||
|
||
def export(self, **kwargs):
|
||
|
||
from .export_meta import export_rebuild_model
|
||
|
||
models = export_rebuild_model(model=self, **kwargs)
|
||
return models
|