FunASR/funasr/models/ct_transformer/export_meta.py

68 lines
1.9 KiB
Python

#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import types
import torch
from funasr.register import tables
def export_rebuild_model(model, **kwargs):
is_onnx = kwargs.get("type", "onnx") == "onnx"
encoder_class = tables.encoder_classes.get(kwargs["encoder"] + "Export")
model.encoder = encoder_class(model.encoder, onnx=is_onnx)
model.forward = types.MethodType(export_forward, model)
model.export_dummy_inputs = types.MethodType(export_dummy_inputs, model)
model.export_input_names = types.MethodType(export_input_names, model)
model.export_output_names = types.MethodType(export_output_names, model)
model.export_dynamic_axes = types.MethodType(export_dynamic_axes, model)
model.export_name = types.MethodType(export_name, model)
return model
def export_forward(self, inputs: torch.Tensor, text_lengths: torch.Tensor):
"""Compute loss value from buffer sequences.
Args:
input (torch.Tensor): Input ids. (batch, len)
hidden (torch.Tensor): Target ids. (batch, len)
"""
x = self.embed(inputs)
h, _ = self.encoder(x, text_lengths)
y = self.decoder(h)
return y
def export_dummy_inputs(self):
length = 120
text_indexes = torch.randint(0, self.embed.num_embeddings, (2, length)).type(torch.int32)
text_lengths = torch.tensor([length - 20, length], dtype=torch.int32)
return (text_indexes, text_lengths)
def export_input_names(self):
return ["inputs", "text_lengths"]
def export_output_names(self):
return ["logits"]
def export_dynamic_axes(self):
return {
"inputs": {0: "batch_size", 1: "feats_length"},
"text_lengths": {
0: "batch_size",
},
"logits": {0: "batch_size", 1: "logits_length"},
}
def export_name(self):
return "model.onnx"