FunASR/funasr/models/contextual_paraformer/export_meta.py

114 lines
3.7 KiB
Python

#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import torch
import types
from funasr.register import tables
from funasr.models.seaco_paraformer.export_meta import ContextualEmbedderExport
class ContextualEmbedderExport2(ContextualEmbedderExport):
def __init__(self, model, **kwargs):
super().__init__(model)
self.embedding = model.bias_embed
model.bias_encoder.batch_first = False
self.bias_encoder = model.bias_encoder
def export_rebuild_model(model, **kwargs):
is_onnx = kwargs.get("type", "onnx") == "onnx"
encoder_class = tables.encoder_classes.get(kwargs["encoder"] + "Export")
model.encoder = encoder_class(model.encoder, onnx=is_onnx)
predictor_class = tables.predictor_classes.get(kwargs["predictor"] + "Export")
model.predictor = predictor_class(model.predictor, onnx=is_onnx)
# little difference with bias encoder with seaco paraformer
embedder_class = ContextualEmbedderExport2
embedder_model = embedder_class(model, onnx=is_onnx)
if kwargs["decoder"] == "ParaformerSANMDecoder":
kwargs["decoder"] = "ParaformerSANMDecoderOnline"
decoder_class = tables.decoder_classes.get(kwargs["decoder"] + "Export")
model.decoder = decoder_class(model.decoder, onnx=is_onnx)
from funasr.utils.torch_function import sequence_mask
model.make_pad_mask = sequence_mask(kwargs["max_seq_len"], flip=False)
model.feats_dim = 560
import copy
backbone_model = copy.copy(model)
# backbone
backbone_model.forward = types.MethodType(export_backbone_forward, backbone_model)
backbone_model.export_dummy_inputs = types.MethodType(
export_backbone_dummy_inputs, backbone_model
)
backbone_model.export_input_names = types.MethodType(
export_backbone_input_names, backbone_model
)
backbone_model.export_output_names = types.MethodType(
export_backbone_output_names, backbone_model
)
backbone_model.export_dynamic_axes = types.MethodType(
export_backbone_dynamic_axes, backbone_model
)
backbone_model.export_name = types.MethodType(export_backbone_name, backbone_model)
return backbone_model, embedder_model
def export_backbone_forward(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
bias_embed: torch.Tensor,
):
batch = {"speech": speech, "speech_lengths": speech_lengths}
enc, enc_len = self.encoder(**batch)
mask = self.make_pad_mask(enc_len)[:, None, :]
pre_acoustic_embeds, pre_token_length, _, _ = self.predictor(enc, mask)
pre_token_length = pre_token_length.floor().type(torch.int32)
decoder_out, _ = self.decoder(enc, enc_len, pre_acoustic_embeds, pre_token_length, bias_embed)
decoder_out = torch.log_softmax(decoder_out, dim=-1)
return decoder_out, pre_token_length
def export_backbone_dummy_inputs(self):
speech = torch.randn(2, 30, self.feats_dim)
speech_lengths = torch.tensor([6, 30], dtype=torch.int32)
bias_embed = torch.randn(2, 1, 512)
return (speech, speech_lengths, bias_embed)
def export_backbone_input_names(self):
return ["speech", "speech_lengths", "bias_embed"]
def export_backbone_output_names(self):
return ["logits", "token_num"]
def export_backbone_dynamic_axes(self):
return {
"speech": {0: "batch_size", 1: "feats_length"},
"speech_lengths": {
0: "batch_size",
},
"bias_embed": {0: "batch_size", 1: "num_hotwords"},
"logits": {0: "batch_size", 1: "logits_length"},
}
def export_backbone_name(self):
return "model.onnx"